Образование перекиси водорода. Перекись водорода: помощь или вред? Химические свойства и методы получения

Общеизвестна формула основы жизни - воды. Её молекула состоит из двух атомов водорода и одного кислорода, что записывается как H2O. Если же кислорода будет в два раза больше, то получится совсем другое вещество - H2O2. Что это и чем полученное вещество будет отличаться от своей «родственницы» воды?

H2O2 - что это за вещество?

Остановимся на нем подробнее. H2O2 - формула перекиси водорода, Да, той самой, которой обрабатывают царапины, белой. Пероксид водорода H2O2 - научное.

Для дезинфекции используют трехпроцентный раствор перекиси. В чистом или концентрированном виде она вызывает химические ожоги кожи. Тридцатипроцентный раствор перекиси иначе называют пергидроль; раньше его применяли в парикмахерских для обесцвечивания волос. Обожженная им кожа также становится белой.

Химические свойства Н2О2

Перекись водорода представляет собой жидкость без цвета и с «металлическим» привкусом. Является хорошим растворителем и сама легко растворяется в воде, эфире, спиртах.

Трёх- и шестипроцентные растворы перекиси обычно готовят, разбавляя тридцатипроцентный раствор. При хранении концентрированного Н2О2 происходит разложение вещества с выделением кислорода, поэтому в плотно закупоренных емкостях его хранить не следует во избежание взрыва. С уменьшением концентрации пероксида, повышается его устойчивость. Также для замедления разложения Н2О2 можно добавлять в него различные вещества, например, фосфорную или салициловую кислоту. Для хранения растворов сильной концентрации (более 90 процентов) в перекись добавляют пирофосфат натрия, который стабилизирует состояние вещества, а также используют сосуды из алюминия.

Н2О2 в химических реакциях может быть как окислителем, так и восстановителем. Однако чаще пероксид проявляет окислительные свойства. Перекись принято считать кислотой, но очень слабой; соли перекиси водорода называют пероксидами.

как метод получения кислорода

Реакция разложения Н2О2 происходит при воздействии на вещество высокой температуры (более 150 градусов Цельсия). В результате образуются вода и кислород.

Формула реакции - 2 Н2О2 + t -> 2 Н2О + О2

Степень окисления Н в Н 2 О 2 и Н 2 О = +1.
Степень окисления О: в Н 2 О 2 = -1, в Н 2 О = -2, в О 2 = 0
2 О -1 - 2е -> О2 0

О -1 + е -> О -2
2 Н2О2 = 2 Н2О + О2

Разложение перекиси водорода может произойти и при комнатной температуре, если использовать катализатор (химическое вещество, ускоряющее реакцию).

В лабораториях одним из методов получения кислорода, наряду с разложением бертолетовой соли или марганцовки, является реакция разложения перекиси. В таком случае в качестве катализатора используют оксид марганца (IV). Другие вещества, ускоряющие разложение H2O2, - медь, платина, гидроксид натрия.

История открытия перекиси

Первые шаги к открытию перекиси были сделаны в 1790 году немцем Александром Гумбольдтом, когда он обнаружил превращения оксида бария в пероксид при нагревании. Тот процесс сопровождался поглощением кислорода из воздуха. Через двенадцать лет учеными Тенаром и Гей-Люссаком был проведен опыт по сжиганию щелочных металлов с избытком кислорода, в результате чего был получен пероксид натрия. Но пероксид водорода был получен позже, лишь в 1818 году, когда Луи Тенар изучал воздействие кислот на металлы; для их устойчивого взаимодействия было необходимо низкое количество кислорода. Проводя подтверждающий опыт с перекисью бария и серной кислотой, ученый добавил к ним воду, хлористый водород и лёд. Через непродолжительное время, Тенар обнаружил на стенках емкости с пероксидом бария небольшие застывшие капли. Стало ясно, что это H2O2. Тогда дали полученному H2O2 название «окисленная вода». Это и была перекись водорода - бесцветная, ничем не пахнущая, трудноиспаримая жидкость, хорошо растворяющая другие вещества. Результат взаимодействия H2O2 и H2O2 - реакция диссоциации, перекись растворима в воде.

Интересный факт - быстро обнаружились свойства нового вещества, позволяющие использовать его в реставрационных работах. Сам Тенар при помощи пероксида отреставрировал картину Рафаэля, потемневшую от времени.

Перекись водорода в XX веке

После тщательного изучения полученного вещества его стали производить в промышленных масштабах. В начале двадцатого века ввели электрохимическую технологию производства перекиси, основанную на процессе электролиза. Но срок годности полученного таким методом вещества был невелик, около пары недель. Чистая перекись нестабильна, и по большей части её выпускали в тридцатипроцентной концентрации для отбеливания ткани и в трёх- или шестипроцентной - для бытовых нужд.

Учёные фашистской Германии использовали пероксид для создания ракетного двигателя на жидком топливе, который использовался для оборонных нужд во Второй Мировой войне. В результате взаимодействия Н2О2 и метанола/гидразина, получалось мощное топливо, на котором самолет достигал скорости более 950 км/ч.

Где применяется Н2О2 сейчас?

  • в медицине - для обработки ран;
  • в целлюлозно-бумажной промышленности используются отбеливающие свойства вещества;
  • в текстильной промышленности перекисью отбеливают натуральные и синтетические ткани, меха, шерсть;
  • как ракетное топливо или его окислитель;
  • в химии - для получения кислорода, как пенообразователь для производства пористых материалов, как катализатор или гидрирующий агент;
  • для производства дезинфицирующих или чистящих средств, отбеливателей;
  • для обесцвечивания волос (это устаревший метод, так как волосы сильно повреждаются пероксидом);

Перекись водорода можно успешно применять для решения разных бытовых задач. Но использовать в этих целях можно лишь трёхпроцентную перекись водорода. Вот некоторые способы:

  • Для очистки поверхностей нужно залить перекись в сосуд пульверизатором и разбрызгивать на загрязненные места.
  • Для дезинфекции предметов их нужно протереть неразбавленным раствором Н2О2. Это поможет очистить их от вредных микроорганизмов. Губки для мытья можно замочить в воде с перекисью (пропорция 1:1).
  • Для отбеливания тканей при стирке белых вещей добавляют стакан пероксида. Можно также выполоскать белые ткани в воде, смешанной со стаканом Н2О2. Этот способ возвращает белизну, предохраняет ткани от пожелтения и помогает удалить трудновыводимые пятна.
  • Для борьбы с плесенью и грибком следует смешать в емкости с пульверизатором перекись и воду в пропорции 1:2. Полученную смесь распылять на зараженные поверхности и через 10 минут очищать их при помощи щётки или губки.
  • Обновить потемневшую затирку в кафельной плитке можно, распылив пероксид на нужные участки. Через 30 минут нужно тщательно потереть их жесткой щёткой.
  • Для мытья посуды полстакана Н2О2 добавить в полный таз с водой (или раковину с закрытым сливом). Промытые в таком растворе чашки и тарелки будут сиять чистотой.
  • Чтобы очистить зубную щётку, нужно опустить её в неразведенный трёхпроцентный раствор перекиси. Затем промыть под сильной струей воды. Этот способ хорошо дезинфицирует предмет гигиены.
  • Чтобы продезинфицировать купленные овощи и фрукты, следует распылить на них раствор 1 части перекиси и 1 части воды, после чего тщательно промыть их водой (можно холодной).
  • На дачном участке при помощи Н2О2 можно бороться с болезнями растений. Нужно опрыскивать их раствором перекиси или замочить семена незадолго до посадки в 4,5 литрах воды, смешанной с 30 мл сорокапроцентной перекиси водорода.
  • Для оживления аквариумных рыбок, если они отравились аммиаком, задохнулись при отключении аэрации или по другой причине, можно попробовать поместить их в воду с перекисью водорода. Нужно смешать трёхпроцентную перекись с водой из расчёта 30 мл на 100 литров и поместить в полученную смесь бездыханных рыб на 15-20 минут. Если они не оживут за это время, значит, средство не помогло.

Даже в результате активного встряхивания бутылки с водой в ней образуется некоторое количество пероксида, так как вода при этом действии насыщается кислородом.

В свежих фруктах и овощах Н2О2 также содержится, пока они не подвергнутся термической обработке. При нагреве, варке, обжарке и других процессах с сопутствующей высокой температурой уничтожается большое количество кислорода. Именно поэтому прошедшие кулинарную обработку продукты считаются не такими полезными, хотя какое-то количество витаминов в них остается. Свежевыжатые соки или кислородные коктейли, подаваемые в санаториях, полезны по той же причине - из-за насыщения кислородом, который дает организму новые силы и очищает его.

Опасность перекиси при употреблении внутрь

После вышесказанного может показаться, что перекись можно специально принимать внутрь, и от этого будет польза организму. Но это совсем не так. В воде или соках соединение содержится в минимальных количествах и тесно связано с другими веществами. Прием же «ненатуральной» перекиси водорода внутрь (а вся перекись, купленная в магазине или произведенная в результате химических опытов самостоятельно, никак не может считаться натуральной, к тому же обладает слишком высокой концентрацией по сравнению с природной) может привести к опасным для жизни и здоровья последствиям. Чтобы понять - почему, нужно вновь обратиться к химии.

Как уже упомянуто, при некоторых условиях пероксид водорода разрушается и выделяет кислород, являющийся активным окислителем. может произойти при столкновении Н2О2 с пероксидазой - внутриклеточным ферментом. В основе использования перекиси для дезинфекции положены именно её окислительные свойства. Так, когда рану обрабатывают Н2О2 - выделяющийся кислород уничтожает живые патогенные микроорганизмы, попавшие в нее. Такое же действие она оказывает и на другие живые клетки. Если обработать неповрежденную кожу пероксидом, а потом протереть место обработки спиртом, почувствуется жжение, что подтверждает наличие микроскопических повреждений после перекиси. Но при внешнем применении перекиси низкой концентрации какого-то заметного вреда организму не будет.

Другое дело, если её пытаться принимать внутрь. То вещество, которое способно повреждать даже сравнительно толстую кожу снаружи, попадает на слизистые оболочки пищеварительного тракта. То есть происходят химические мини-ожоги. Разумеется, выделяющийся окислитель - кислород - может заодно убить и вредные микробы. Но этот же процесс произойдет и с клетками пищевого тракта. Если ожоги в результате действия окислителя будут повторяться, то возможна атрофия слизистых оболочек, а это - первый шаг на пути к раку. Гибель клеток кишечника приводит к невозможности организма усваивать питательные вещества, этим объясняется, например, снижение веса и исчезновение запоров у некоторых людей, практикующих «лечение» перекисью.

Отдельно нужно сказать о таком методе употребления перекиси, как внутривенные инъекции. Даже если по какой-то причине их назначил врач (оправдано это может быть лишь при заражении крови, когда других подходящих лекарств в наличии нет), то под медицинским наблюдением и со строгим расчетом дозировок риски все-таки есть. Но в такой экстремальной ситуации это будет шансом на выздоровление. Самому же назначать себе уколы перекиси водорода ни в коем случае нельзя. Н2О2 представляет большую опасность для клеток крови - эритроцитов и тромбоцитов, так как при попадании в кровеносное русло разрушает их. К тому же, может произойти смертельно опасная закупорка сосудов высвободившимся кислородом - газовая эмболия.

Меры безопасности в обращении с Н2О2

  • Хранить в недоступном для детей и недееспособных лиц месте. Отсутствие запаха и выраженного вкуса делает перекись особенно опасной для них, так как могут быть приняты большие дозы. При попадании внутрь раствора, последствия употребления могут быть непредсказуемыми. Необходимо незамедлительно обратиться к врачу.
  • Растворы перекиси концентрацией более трёх процентов вызывают ожоги при попадании на кожу. Место ожога нужно промыть большим количеством воды.

  • Не допускать попадания раствора пероксида в глаза, так как образуется их отек, покраснение, раздражение, иногда болевые ощущения. Первая помощь до обращения к врачу - обильное промывание глаз водой.
  • Хранить вещество так, чтобы было понятно, что это - H2O2, то есть в емкости с наклейкой во избежание случайного применения не по назначению.
  • Условия хранения, продлевающие его срок, - темное, сухое, прохладное место.
  • Нельзя смешивать пероксид водорода с любыми жидкостями, кроме чистой воды, в том числе и с хлорированной водой из-под крана.
  • Все вышесказанное применимо не только к Н2О2, но и ко всем содержащим его препаратам.

Страница 1

Перекисные соединения – сложные вещества, в которых атомы кислорода соеденены друг с другом. Пероксиды водорода выделяют кислород. Для неорганических веществ рекомендуется использовать термин пероксид

Для органических веществ используют термин перекись.

Пероксиды многих органических веществ взрывоопасны (перекись ацетона), в частности, они легко образуются фотохимически при длительном освещении эфиров в отсутствии кислорода. Поэтому перед перегонкой многие эфиры (диэтиловый эфир, тетрагидрофуран) требуют проверки на отсутствие пероксидов.

При нулевой температуре супероксиды разлагаются, выделяя свободный кислород

Пероксид водорода Н2О2 смешивается с водой в любых соотношениях, растворяется также в спирте, эфире. 30% -ный раствор Н2О2 называют пергидролем.

При растворении в воде они почти полностью гидролизуются: Na2O2 + 2H2O ® 2NaOH + H2O2. Гидролизу способствует подкисление растворов. Как кислота Н2О2 образует и кислые соли, например, Ва(НО2)2, NaHO2 и др. Кислые соли менее подвержены гидролизу, но легко разлагаются при нагревании с выделением кислорода: 2NaHO2 ® 2NaOH + O2. Выделяющаяся щелочь, как и в случае Н2О2, способствует разложению.

Растворы Н2О2, особенно концентрированные, обладают сильным окислительным действием. Так, при действии 65%-ного раствора Н2О2 на бумагу, опилки и другие горючие вещества они воспламеняются. Менее концентрированные растворы обесцвечивают многие органические соединения, например, индиго. Необычно идет окисление формальдегида: Н2О2 восстанавливается не до воды (как обычно), а до свободного водорода: 2НСНО + Н2О2 ® 2НСООН + Н2. Если взять 30%-ный раствор Н2О2 и 40%-ный раствор НСНО, то после небольшого подогрева начинается бурная реакция, жидкость вскипает и пенится. Окислительное действие разбавленных растворов Н2О2 больше всего проявляется в кислой среде, например, H2O2 + H2C2O4 ® 2H2O + 2CO2, но возможно окисление и в щелочной среде:

Na + H2O2 + NaOH ® Na2; 2K3 + 3H2O2 ® 2KCrO4 + 2KOH + 8H2O.

Молекула пероксида водорода сильно полярна, что приводит к возникновению водородных связей между молекулами. Связь O-O непрочна, поэтому H2O2 - неустойчивое соединение, легко разлагается. Так же этому может поспособствовать присутствие ионов переходных металлов и серебра:

2H2O2 → 2H2O + O2

Однако очень чистый пероксид водорода устойчив.

Пероксид водорода проявляет слабые кислотные свойства (К = 1,4×10−12), и поэтому диссоциирует по двум ступеням:

При действии концентрированного раствора Н2O2 на некоторые гидроксиды в ряде случаев можно выделить пероксиды металлов, которые можно рассматривать как соли пероксида водорода (Li2O2, MgO2 и др.):

Н2O2 + 2NaOH → Na2O2 + 2H2O

H2O2 + Ba(OH)2 → BaO2↓ + 2H2O

Пероксид водорода может проявлять как окислительные, так и восстановительные свойства. Например, при взаимодействии с оксидом серебра он является восстановителем:

В реакции с нитритом калия соединение служит окислителем:

Пероксидная группа [-O-O-] входит в состав многих веществ. Такие вещества называют пероксидами, или пероксидными соединениями. К ним относятся пероксиды металлов (Na2O2, BaO2 и др.). Кислоты, содержащие пероксидную группу, называют пероксокислотами, например, пероксомонофосфорная H3PO5 и пероксидисерная H2S2O8 кислоты.

Пероксиды замедляют синтез белка в клетке. В зависимости от структуры различают собственно пероксиды, надпероксиды, озониды.

При высокой температуре водород соединяется со щелочными и щелочно-земельными металлами, образуя белые кристаллические вещества-гидриды металлов (LiH¸ NaH , КH, CaH2 и др).

В этих соединениях металл имеет положительную валентность, водород- отрицательную. Если гидрид металла расплавить и подвергнуть электролизу, то водород будет выделяться на аноде, металл на катоде. Отрицательно заряженный ион водорода Н- имеет завершенный уровень, аналогичный атому гелия.

Гидриды металлов легко разлагаются водой с образованием соответствующей щелочи и водорода:

Повышенной реакционной способностью обладает атомарный водород. Он содержится в водороде в момент выделения. Атомарный водород при комнатной температуре восстанавливает окислы металлов, взаимодействует с кислородом, серой и фосфором.

Перекисные соединения - сложные вещества, в которых атомы кислорода соединены друг с другом.

Озонирование - экологически чистая технология очистки, основанная на использовании газа озона- сильного окислителя. Озонатор вырабатывает озон из кислорода, содержащегося в атмосферном воздухе. После взаимодействия с загрязняющими химическими и микробиологичесими веществами озон превращается в обычный кислород. Практически доказано, что все продукты озонирования являются более безвредными для человека.

Кроме воды, известно другое соединение водорода с кислородом - пероксид водорода (Н 2 О 2). В природе он образуется как побочный продукт при окислении многих веществ кислородом воздуха. Следы его постоянно содержатся в атмосферных осадках. Пероксид водорода частично образуется также в пламени горящего водорода, но при остывании продуктов сгорания разлагается.

В довольно больших концентрациях (до нескольких процентах) Н 2 О 2 может быть получена взаимодействием водорода в момент выделения с молекулярным кислородом. Пероксид водорода частично образуется также при нагревании до 2000 °С влажного кислорода, при прохождении тихого электрического разряда сквозь влажную смесь водорода с кислородом и при действии на воду ультрафиолетовых лучей или озона.

Теплота образование пероксида водорода.

Непосредственно определить теплоту образования пероксида водорода из элементов не удаётся. Возможность найти её косвенным путём даёт установленный Г. И. Гессом (1840 г.) закон постоянства сумм тепла: общий тепловой эффект ряда последовательных химических реакций равен тепловому эффекту любого другого ряда реакций с теми же самыми исходными веществами и конечными продуктами.

Строго говоря, закон Гесса следовало бы сформулировать, как "закон постоянства сумм энергий", потому что при химических превращениях энергия может выделяться или поглощаться не только в тепловой, но и как механическая, электрическая и др. Кроме того, предполагается, что рассматриваемые процессы протекают при постоянном давлении или постоянном объёме. Как правило, именно так и обстоит дело при химических реакциях, а все другие формы энергии могут быть пересчитаны на тепловую. Сущность этого закона особенно наглядно выявляется в свете следующей механической аналогии: общая работа, производимая опускающимся без трения грузом, зависит не от пути, а только от разности начальной и конечной высот. Подобным же образом общий тепловой эффект той или иной химической реакции определяется только разностью теплот образования (из элементов) её конечных продуктов и исходных веществ. Если всё эти величины известны, то для вычисления теплового эффекта реакции достаточно из суммы теплот образования конечных продуктов вычесть сумму теплот образования исходных веществ. Законом Гесса часто пользуются при вычислении теплот таких реакций, для которых прямое экспериментальное их определение трудно или даже невозможно.

В применении к Н 2 О 2 расчёт можно провести на основе рассмотрения двух различных путей образования воды:

1. Пусть первоначально при соединении водорода и кислорода образуется пероксид водорода, который затем разлагается на воду и кислород. Тогда будем иметь следующие два процесса:

2 Н 2 + 2 О 2 = 2 Н 2 О 2 + 2х кДж

2 Н 2 О 2 = 2 Н 2 О + О 2 + 196 кДж

Тепловой эффект последней реакции легко определяется экспериментально. Складывая почленно оба уравнения и сокращая одиночные члены, получаем

2 Н 2 + О 2 = 2 Н 2 О + (2х + 196) кДж.

2. Пусть при соединении водорода с кислородом непосредственно образуется вода, тогда имеем

2 Н 2 + О 2 = 2 Н 2 О + 573 кДж.

Так как в обоих случаях и исходные вещества, и конечные продукты одинаковы, 2х + 196 = 573, откуда х = 188,5 кДж. Это и будет теплота образования моля пероксида водорода из элементов.

Получение.

Пероксид водорода проще всего получать из пероксида бария (ВаО2), действуя на неё разбавленной серной кислотой:

ВаО 2 + Н 2 SO 4 = BaSO 4 + Н 2 О 2 .

При этом наряду с пероксидом водорода образуется нерастворимый в воде сульфат бария, от которого жидкость может быть отделена фильтрованием. Продаётся Н2О2 обычно в виде 3%-ного водного раствора.

Продолжительным упариванием обычного 3%-ного водного раствора Н 2 О 2 при 60-70 °С можно довести содержание в нём пероксида водорода до 30%. Для получения более крепких растворов отгонку воды приходится производить под уменьшенным давлением. Так, при 15 мм рт. ст. сначала (примерно с 30 °С) отгоняется главным образом вода, а когда температура достигает 50 °С, в перегонной колбе остаётся очень концентрированный раствор пероксида водорода, из которого при сильном охлаждении могут быть выделены его белые кристаллы.

Основным методом получения пероксида водорода является взаимодействие с водой надсерной кислоты (или некоторых её солей), легко протекающее по схеме:

Н 2 S 2 O 8 + 2 H 2 O = 2 H 2 SO 4 + Н 2 О 2 .

Меньшее значение имеют некоторые новые методы (разложение органических пероксидных соединений и др.) и старый способ получения из ВаО 2 . Для хранения и перевозки больших количеств пероксида водорода наиболее пригодны ёмкости из алюминия (не ниже 99,6%-ной чистоты).

Физические свойства.

Чистый пероксид водорода - бесцветная сиропообразная жидкость (с плотностью около 1,5 г/мл), под достаточно уменьшенным давлением перегоняющуюся без разложения. Замерзание Н 2 О 2 сопровождается сжатием (в отличие от воды). Белые кристаллы пероксида водорода плавятся при -0,5 °С, т. е. почти при той же температуре, что и лёд.

Теплота плавления пероксида водорода составляет 13 кДж/моль, теплота испарения - 50 кДж/моль (при 25 °С). Под обычным давлением чистый Н 2 О 2 кипит при 152 °С с сильным разложением (причём пары могут быть взрывоопасны). Для его критических температуры и давления теоретически рассчитаны значения 458 °С и 214 атм. Плотность чистого Н 2 О 2 равна 1,71 г/см3 в твёрдом состоянии, 1,47 г/см3 при 0 °С и 1,44 г/см3 при 25 °С. Жидкий пероксид водорода, подобно воде, сильно ассоциирована. Показатель преломления Н 2 О 2 (1,41), а также её вязкость и поверхностное натяжение несколько выше, чем у воды (при той же температуре).

Структурная формула.

Структурная формула пероксида водорода Н-О-О-Н показывает, что два атома кислорода непосредственно соединены друг с другом. Связь это непрочна и обусловливает неустойчивость молекулы. Действительно, чистая Н 2 О 2 способна разлагаться на воду и кислород со взрывом. В разбавленных водных растворах она значительно устойчивее.

Оптическими методами установлено, что молекула Н-О-О-Н не линейна: связи Н-О образуют углы около 95° со связью О-О. Крайними пространственными формами молекул подобного типа являются показанные ниже плоские структуры - цис-форма (обе связи Н-О по одну сторону от связи О-О) и транс-форма (связи Н-О по разные стороны).

Переход от одной из них к другой мог бы осуществляться путём поворота связи Н-О по оси связи О-О, но этому препятствует потенциальный барьер внутреннего вращения, обусловленный необходимостью промежуточного преодоления менее энергетически выгодных состояний (на 3,8 кДж/моль для транс-формы и на 15 кДж/моль для цис-формы). Практически круговое вращение связей Н-О в молекулах Н 2 О 2 не осуществляется, а происходит только некоторые их колебания около наиболее устойчивого для данной молекулы промежуточного состояния - косой ("гош") - формы.

Химические свойства.

Чем чище пероксид водорода, тем медленнее она разлагается при хранении. Особенно активными катализаторами разложения Н 2 О 2 являются соединения некоторых металлов (Сu, Fe, Mn и др.), причём заметно действуют даже такие их следы, которые не поддаются прямому аналитическому определению. Для связывания этил металлов к пероксиду водорода в качестве "стабилизатора" часто добавляют немного (порядка 1:10 000) пирофосфата натрия - Na 4 P 2 O 7 .

Сама по себе щелочная Среда не вызывает разложения пероксида водорода, но сильно способствует её каталитическому распаду. Напротив, кислотная среда этот распад затрудняет. Поэтому раствор Н 2 О 2 часто подкисляют серной или фосфорной кислотой. Разложение пероксида водорода идёт быстрее при нагревании и на свету, поэтому хранить его следует в тёмном прохладном месте.

Подобно воде, пероксид водорода хорошо растворяет многие соли. С водой (также со спиртом) она смешивается в любых соотношениях. Разбавленный его раствор имеет неприятный "металлический" вкус. При действии на кожу крепких растворов получаются ожоги, причём обожженное место окрашивается в белый цвет.

Ниже сопоставлена растворимость некоторых солей в воде и пероксиде водорода при 0 °С (г на 100 г растворителя):

Из приведённых примеров видно, что при переходе от Н 2 О к Н 2 О 2 происходит не простое смещение растворимости в ту или иную сторону, а проявляется его сильная зависимость от химической природы солей.

Несмотря на большое сходство пероксида водорода с водой по составу и ряду свойств, смеси их замерзают при гораздо более низкой температуре, чем каждое вещество в отдельности. Существуют смеси замерзающие лишь ниже -50 °С. При таких условиях может образоваться очень нестойкое соединений состава Н 2 О 2 ·2Н 2 О. Следует отметить, что содержащие более 50% Н 2 О 2 водные растворы (равно как и безводный пероксид водорода) весьма склонны к переохлаждению. С эфиром пероксид водорода, подобно воде, смешивается лишь ограничено.

Пероксид водорода является сильным окислителем, т. е. легко отдаёт свой лишний (по сравнению с более устойчивым соединением - водой) атом кислорода. Так, при действии безводной и даже высококонцентрированной Н 2 О 2 на бумагу, опилки и другие горючие вещества они воспламеняются. Практическое применение пероксида водорода основано главным образом на его окисляющем действии. Ежегодное мировое производство Н 2 О 2 превышает 100 тыс. т.

Характерный для пероксида водорода окислительный распад может быть схематически изображён так:

Н 2 О 2 = Н 2 О + О (на окисление).

ВОДОРОДА ПЕРОКСИД –(старое название – перекись водорода), соединение водорода и кислорода Н 2 О 2 , содержащее рекордное количество кислорода – 94% по массе. В молекулах Н 2 О 2 содержатся пероксидные группы –О–О– (см . ПЕРОКСИДЫ ), которые во многом определяют свойства этого соединения.

Впервые пероксид водорода получил в 1818 французский химик Луи Жак Тенар (1777 – 1857), действуя сильно охлажденной соляной кислотой на пероксид бария:

BaO 2 + 2HCl  BaCl 2 + H 2 O 2 . Пероксид бария, в свою очередь, получали сжиганием металлического бария. Для выделения из раствора Н 2 О 2 Тенар удалил из него образовавшийся хлорид бария: BaCl 2 + Ag 2 SO 4  2AgCl + BaSO 4 . Чтобы не использовать дорогую соль серебра в последующем для получения Н 2 О 2 использовали серную кислоту: BaO 2 + H 2 SO 4  BaSO 4 + H 2 O 2 , поскольку при этом сульфат бария остается в осадке. Иногда применяли другой способ: пропускали углекислый газ во взвесь ВаО 2 в воде: BaO 2 + H 2 O + CO 2  BaCO 3 + H 2 O 2 , поскольку карбонат бария также нерастворим. Этот способ предложил французский химик Антуан Жером Балар (1802–1876), прославившийся открытием нового химического элемента брома (1826). Применяли и более экзотические методы, например, действие электрического разряда на смесь 97% кислорода и 3% водорода при температуре жидкого воздуха (около –190° С), так был получен 87%-ный раствор Н 2 О 2 .

Концентрировали Н 2 О 2 путем осторожного упаривания очень чистых растворов на водяной бане при температуре не выше 70–75° С; так можно получить примерно 50%-ный раствор. Сильнее нагревать нельзя – происходит разложение Н 2 О 2 , поэтому отгонку воды проводили при пониженном давлении, используя сильное различие в давлении паров (и, следовательно, в температуре кипения) Н 2 О и Н 2 О 2 . Так, при давлении 15 мм рт.ст. сначала отгоняется в основном вода, а при 28 мм рт.ст. и температуре 69,7° С, отгоняется чистый пероксид водорода. Другой способ концентрирования – вымораживание, так как при замерзании слабых растворов лед почти не содержит Н 2 О 2 . Окончательно можно обезводить поглощением паров воды серной кислотой на холоде под стеклянным колоколом.

Многие исследователи 19 в., получавшие чистый пероксид водорода, отмечали опасность этого соединения. Так, когда пытались отделить Н 2 О 2 от воды путем экстракции из разбавленных растворов диэтиловым эфиром с последующей отгонкой летучего эфира, полученное вещество иногда без видимых причин взрывалось. В одном из таких опытов немецкий химик Ю.В.Брюль получил безводный Н 2 О 2 , который обладал запахом озона и взорвался от прикосновения неоплавленной стеклянной палочки. Несмотря на малые количества Н 2 О 2 (всего 1–2 мл) взрыв был такой силы, что пробил круглую дыру в доске стола, разрушил содержимое его ящика, а также стоящие на столе и поблизости склянки и приборы.

Физические свойства. Чистый пероксид водорода очень сильно отличается от знакомого всем 3%-ного раствора Н 2 О 2 , который стоит в домашней аптечке. Прежде всего, он почти в полтора раза тяжелее воды (плотность при 20° С равна 1,45 г/см 3). Замерзает Н 2 О 2 при температурой немного меньшей, чем температура замерзания воды – при минус 0,41° С, но если быстро охладить чистую жидкость, она обычно не замерзает, а переохлаждается, превращаясь в прозрачную стеклообразную массу. Растворы Н 2 О 2 замерзают при значительно более низкой температуре: 30%-ный раствор – при минус 30° С, а 60%-ный – при минус 53° С. Кипит Н 2 О 2 при температуре более высокой, чем обычная вода, – при 150,2° С. Смачивает стекло Н 2 О 2 хуже, чем вода, и это приводит к интересному явлению при медленной перегонке водных растворов: пока из раствора отгоняется вода, она, как обычно, поступает из холодильника в приемник в виде капель; когда же начинает перегоняться Н 2 О 2 , жидкость выходит из холодильника в виде непрерывной тоненькой струйки. На коже чистый пероксид водорода и его концентрированные растворы оставляют белые пятна и вызывают ощущение жгучей боли из-за сильного химического ожога.

В статье, посвященной получению пероксида водорода, Тенар не очень удачно сравнил это вещество с сиропом, возможно, он имел в виду, что чистый Н 2 О 2 , как и сахарный сироп, сильно преломляет свет. Действительно, коэффициент преломления безводного Н 2 О 2 (1,41) намного больше, чем у воды (1,33). Однако то ли в результате неверного толкования, то ли из-за плохого перевода с французского, практически во всех учебниках до сих пор пишут, что чистый пероксид водорода – «густая сиропообразная жидкость», и даже объясняют это теоретически – образованием водородных связей. Но ведь вода тоже образует водородные связи. На самом деле вязкость у Н 2 О 2 такая же, как и у чуть охлажденной (примерно до 13° С) воды, но нельзя сказать, что прохладная вода густая, как сироп.

Реакция разложения. Чистый пероксид водорода – вещество очень опасное, так как при некоторых условиях возможно его взрывное разложение: Н 2 О 2  Н 2 О + 1/2 О 2 с выделением 98 кДж на моль Н 2 О 2 (34 г). Это очень большая энергия: она больше, чем та, которая выделяется при образовании 1 моля HCl при взрыве смеси водорода и хлора; ее достаточно, чтобы полностью испарить в 2,5 раза больше воды, чем образуется в этой реакции. Опасны и концентрированные водные растворы Н 2 О 2 , в их присутствии легко самовоспламеняются многие органические соединения, а при ударе такие смеси могут взрываться. Для хранения концентрированных растворов используют сосуды из особо чистого алюминия или парафинированные стеклянные сосуды.

Чаще приходится встречаться с менее концентрированным 30%-ным раствором Н 2 О 2 , который называется пергидролем, но и такой раствор опасен: вызывает ожоги на коже (при его действии кожа сразу же белеет из-за обесцвечивания красящих веществ), при попадании примесей возможно взрывное вскипание. Разложение Н 2 О 2 и его растворов, в том числе и взрывное, вызывают многие вещества, например, ионы тяжелых металлов, которые при этом играют роль катализатора, и даже пылинки.

Взрывы Н 2 О 2 объясняются сильной экзотермичностью реакции, цепным характером процесса и значительным снижением энергии активации разложения Н 2 О 2 в присутствии различных веществ, о чем можно судить по следующим данным:

Фермент каталаза содержится в крови; именно благодаря ей «вскипает» от выделения кислорода аптечная «перекись водорода», когда ее используют для дезинфекции порезанного пальца. Реакцию разложения концентрированного раствора Н 2 О 2 под действием каталазы использует не только человек; именно эта реакция помогает жуку-бомбардиру бороться с врагами, выпуская в них горячую струю (см . ВЗРЫВЧАТЫЕ ВЕЩЕСТВА ). Другой фермент – пероксидаза действует иначе: он не разлагает Н 2 О 2 , но в его присутствии происходит окисление других веществ пероксидом водорода.

Ферменты, влияющие на реакции пероксида водорода, играют большую роль в жизнедеятельности клетки. Энергию организму поставляют реакции окисления с участием поступающего из легких кислорода. В этих реакциях промежуточно образуется Н 2 О 2 , который вреден для клетки, так как вызывает необратимое повреждение различных биомолекул. Каталаза и пероксидаза совместно превращают Н 2 О 2 в воду и кислород.

Реакция разложения Н 2 О 2 часто протекает по радикально-цепному механизму (см . ЦЕПНЫЕ РЕАКЦИИ ), при этом роль катализатора заключается в инициировании свободных радикалов. Так, в смеси водных растворов Н 2 О 2 и Fe 2+ (так называемый реактив Фентона) идет реакция переноса электрона с иона Fe 2+ на молекулу H 2 O 2 с образованием иона Fe 3+ и очень неустойчивого анион-радикала . – , который сразу же распадается на анион ОН – и свободный гидроксильный радикал ОН . (см . СВОБОДНЫЕ РАДИКАЛЫ ). Радикал ОН . очень активен. Если в системе есть органические соединения, то возможны их разнообразные реакции с гидроксильными радикалами. Так, ароматические соединения и оксикислоты окисляются (бензол, например, превращается в фенол), непредельные соединения могут присоединить гидроксильные группы по двойной связи: СН 2 =СН–СН 2 ОН + 2ОН .  НОСН 2 –СН(ОН)–СН 2 –ОН, а могут вступить в реакцию полимеризации. В отсутствие же подходящих реагентов ОН . реагирует с Н 2 О 2 с образованием менее активного радикала НО 2 . , который способен восстанавливать ионы Fe 2+ , что замыкает каталитический цикл:

H 2 O 2 + Fe 2+  Fe 3+ + OH . + OH –

ОН . + Н 2 О 2  H 2 O + HO 2 .

HO 2 . + Fe 3+  Fe 2+ + O 2 + H +

H + + OH –  H 2 O.

При определенных условиях возможно цепное разложение Н 2 О 2 , упрощенный механизм которого можно представить схемой

ОН . + Н 2 О 2  H 2 O + HO 2 . 2 . + H 2 O 2  H 2 O + O 2 + OH . и т.д.

Реакции разложения Н 2 О 2 идут в присутствии различных металлов переменной валентности. Связанные в комплексные соединения, они часто значительно усиливают свою активность. Например, ионы меди менее активны, чем ионы железа, но связанные в аммиачные комплексы 2+ , они вызывают быстрое разложение Н 2 О 2 . Аналогичное действие оказывают ионы Mn 2+ связанные в комплексы с некоторыми органическими соединениями. В присутствии этих ионов удалось измерить длину цепи реакции. Для этого сначала измерили скорость реакции по скорости выделения из раствора кислорода. Затем в раствор ввели в очень малой концентрации (около 10 –5 моль/л) ингибитор – вещество, эффективно реагирующее со свободными радикалами и обрывающее таким образом цепь. Выделение кислорода сразу же прекратилось, но примерно через 10 минут, когда весь ингибитор израсходовался, снова возобновилось с прежней скоростью. Зная скорость реакции и скорость обрыва цепей, нетрудно рассчитать длину цепи, которая оказалась равной 10 3 звеньев. Большая длина цепи обусловливает высокую эффективность разложения Н 2 О 2 в присутствии наиболее эффективных катализаторов, которые с высокой скоростью генерируют свободные радикалы. При указанной длине цепи скорость разложения Н 2 О 2 фактически увеличивается в тысячу раз.

Иногда заметное разложение Н 2 О 2 вызывают даже следы примесей, которые почти не обнаруживаются аналитически. Так, одним из самых эффективных катализаторов оказался золь металлического осмия: сильное каталитическое действие его наблюдалось даже при разведении 1:10 9 , т.е. 1 г Os на 1000 т воды. Активными катализаторами являются коллоидные растворы палладия, платины, иридия, золота, серебра, а также твердые оксиды некоторых металлов – MnO 2 , Co 2 O 3 , PbO 2 и др., которые сами при этом не изменяются. Разложение может идти очень бурно. Так, если маленькую щепотку MnO 2 бросить в пробирку с 30%-ным раствором Н 2 О 2 , из пробирки вырывается столб пара с брызгами жидкости. С более концентрированными растворами происходит взрыв. Более спокойно протекает разложение на поверхности платины. При этом на скорость реакции сильное влияние оказывает состояние поверхности. Немецкий химик Вальтер Шпринг провел в конце 19 в. такой опыт. В тщательно очищенной и отполированной платиновой чашке реакция разложения 38%-ного раствора Н 2 О 2 не шла даже при нагревании до 60° С. Если же сделать иглой на дне чашки еле заметную царапину, то уже холодный (при 12° С) раствор начинает выделять на месте царапины пузырьки кислорода, а при нагревании разложение вдоль этого места заметно усиливается. Если же в такой раствор ввести губчатую платину, обладающую очень большой поверхностью, то возможно взрывное разложение.

Быстрое разложение Н 2 О 2 можно использовать для эффектного лекционного опыта, если до внесения катализатора добавить к раствору поверхностно-активное вещество (мыло, шампунь). Выделяющийся кислород создает обильную белую пену, которую назвали «зубной пастой для слона».

H 2 O 2 + 2I – + 2H +  2H 2 O + I 2

I 2 + H 2 O 2  2I – + 2H + + O 2 .

Нецепная реакция идет и в случае окисления ионов Fe 2+ в кислых растворах: 2FeSO 4 + H 2 O 2 + H 2 SO 4  Fe 2 (SO 4) 3 + 2H 2 O.

Поскольку в водных растворах почти всегда есть следы различных катализаторов (катализировать разложение могут и ионы металлов, содержащихся в стекле), к растворам Н 2 О 2 , даже разбавленным, при их длительном хранении добавляют ингибиторы и стабилизаторы, связывающие ионы металлов. При этом растворы слегка подкисляют, так как при действии чистой воды на стекло получается слабощелочной раствор, что способствует разложению Н 2 О 2 .

Все эти особенности разложения Н 2 О 2 позволяют разрешить противоречие. Для получения чистого Н 2 О 2 необходимо проводить перегонку при пониженном давлении, поскольку вещество разлагается при нагревании выше 70° С и даже, хотя очень медленно, при комнатной температуре (как сказано в Химической энциклопедии, со скоростью 0,5% в год). В таком случае, как же получена фигурирующая в той же энциклопедии температура кипения при атмосферном давлении, равная 150,2° С? Обычно в таких случаях используют физико-химическую закономерность: логарифм давления пара жидкости линейно зависит от обратной температуры (по шкале Кельвина), поэтому если точно измерить давление пара Н 2 О 2 при нескольких (невысоких) температурах, то легко можно рассчитать, при какой температуре это давление достигнет 760 мм рт.ст. А это и есть температура кипения при обычных условиях.

Теоретически радикалы ОН . могут образоваться и в отсутствие инициаторов, в результате разрыва более слабой связи О–О, но для этого нужна довольно высокая температура. Несмотря на относительно небольшую энергию разрыва этой связи в молекуле Н 2 О 2 (она равна 214 кДж/моль, что в 2,3 раза меньше, чем для связи Н–ОН в молекуле воды), связь О–О все же достаточно прочная, чтобы пероксид водорода был абсолютно устойчив при комнатной температуре. И даже при температуре кипения (150° С) он должен разлагаться очень медленно. Расчет показывает, что при этой температуре разложение на 0,5% должно происходить тоже достаточно медленно, даже если длина цепи равна 1000 звеньев. Несоответствие расчетов и опытных данных объясняется каталитическим разложением, вызванным и мельчайшими примесями в жидкости и стенками реакционного сосуда. Поэтому измеренная многими авторами энергия активации разложения Н 2 О 2 всегда значительно меньше, чем 214 кДж/моль даже «в отсутствие катализатора». На самом деле катализатор разложения всегда есть – и в виде ничтожных примесей в растворе, и в виде стенок сосуда, именно поэтому нагревание безводного Н 2 О 2 до кипения при атмосферном давлении неоднократно вызывало взрывы.

В некоторых условиях разложение Н 2 О 2 происходит очень необычно, например, если нагреть подкисленный серной кислотой раствор Н 2 О 2 в присутствии иодата калия KIO 3 , то при определенных концентрациях реагентов наблюдается колебательная реакция, при этом выделение кислорода периодически прекращается, а потом возобновляется с периодом от 40 до 800 секунд.

Химические свойства Н 2 О 2 . Пероксид водорода – кислота, но очень слабая. Константа диссоциации H 2 O 2 H + + HO 2 – при 25° С равна 2,4·10 –12 , что на 5 порядков меньше, чем для H 2 S. Средние соли Н 2 О 2 щелочных и щелочноземельных металлов обычно называют пероксидами (см . ПЕРОКСИДЫ ). При растворении в воде они почти полностью гидролизуются: Na 2 O 2 + 2H 2 O  2NaOH + H 2 O 2 . Гидролизу способствует подкисление растворов. Как кислота Н 2 О 2 образует и кислые соли, например, Ва(НО 2) 2 , NaHO 2 и др. Кислые соли менее подвержены гидролизу, но легко разлагаются при нагревании с выделением кислорода: 2NaHO 2  2NaOH + O 2 . Выделяющаяся щелочь, как и в случае Н 2 О 2 , способствует разложению.

Растворы Н 2 О 2 , особенно концентрированные, обладают сильным окислительным действием. Так, при действии 65%-ного раствора Н 2 О 2 на бумагу, опилки и другие горючие вещества они воспламеняются. Менее концентрированные растворы обесцвечивают многие органические соединения, например, индиго. Необычно идет окисление формальдегида: Н 2 О 2 восстанавливается не до воды (как обычно), а до свободного водорода: 2НСНО + Н 2 О 2  2НСООН + Н 2 . Если взять 30%-ный раствор Н 2 О 2 и 40%-ный раствор НСНО, то после небольшого подогрева начинается бурная реакция, жидкость вскипает и пенится. Окислительное действие разбавленных растворов Н 2 О 2 больше всего проявляется в кислой среде, например, H 2 O 2 + H 2 C 2 O 4  2H 2 O + 2CO 2 , но возможно окисление и в щелочной среде:

Na + H 2 O 2 + NaOH  Na 2 ; 2K 3 + 3H 2 O 2  2KCrO 4 + 2KOH + 8H 2 O.

Окисление черного сульфида свинца до белого сульфата PbS + 4H 2 O 2  PbSO 4 + 4H 2 O можно использовать для восстановления потемневших свинцовых белил на старых картинах. Под действием света идет окисление и соляной кислоты:

H 2 O 2 + 2HCl  2H 2 O + Cl 2 . Добавление Н 2 О 2 к кислотам сильно увеличивает их действие на металлы. Так, в смеси H 2 O 2 и разбавленной H 2 SO 4 растворяются медь, серебро и ртуть; иод в кислой среде окисляется до иодной кислоты HIO 3 , сернистый газ – до серной кислоты и т.д.

Необычно происходит окисление калий-натриевой соли винной кислоты (сегнетовой соли) в присутствии хлорида кобальта в качестве катализатора. В ходе реакции KOOC(CHOH) 2 COONa + 5H 2 O 2  KHCO 3 + NaHCO 3 + 6H 2 O + 2CO 2 розовый CoCl 2 изменяет цвет на зеленый из-за образования комплексного соединения с тартратом – анионом винной кислоты. По мере протекания реакции и окисления тартрата комплекс разрушается и катализатор снова розовеет. Если вместо хлорида кобальта использовать в качестве катализатора медный купорос, то промежуточное соединение, в зависимости от соотношения исходных реагентов, будет окрашено в оранжевый или зеленый цвет. После окончания реакции восстанавливается синий цвет медного купороса.

Совершенно иначе реагирует пероксид водорода в присутствии сильных окислителей, а также веществ, легко отдающих кислород. В таких случаях Н 2 О 2 может выступать и как восстановитель с одновременным выделением кислорода (так называемый восстановительный распад Н 2 О 2), например:

2KMnO 4 + 5H 2 O 2 + 3H 2 SO 4  K 2 SO 4 + 2MnSO 4 + 5O 2 + 8H 2 O;

Ag 2 O + H 2 O 2  2Ag + H 2 O + O 2 ;

О 3 + Н 2 О 2  H 2 O + 2O 2 ;

NaOCl + H 2 O 2  NaCl + H 2 O + O 2 .

Последняя реакция интересна тем, что в ней образуются возбужденные молекулы кислорода, которые испускают оранжевую флуоресценцию (см . ХЛОР АКТИВНЫЙ ). Аналогично из растворов солей золота выделяется металлическое золото, из оксида ртути получается металлическая ртуть и т.д. Такое необычное свойство Н 2 О 2 позволяет, например, провести окисление гексацианоферрата(II) калия, а затем, изменив условия, восстановить продукт реакции в исходное соединение с помощью того же реактива. Первая реакция идет в кислой среде, вторая – в щелочной:

2K 4 + H 2 O 2 + H 2 SO 4  2K 3 + K 2 SO 4 + 2H 2 O;

2K 3 + H 2 O 2 + 2KOH  2K 4 + 2H 2 O + O 2 .

(«Двойственный характер» Н 2 О 2 позволил одному преподавателю химии сравнить пероксид водорода с героем повести известного английского писателя Стивенсона Странная история доктора Джекила и мистера Хайда , под влиянием придуманного им состава он мог резко изменять свой характер, превращаясь из добропорядочного джентльмена в кровожадного маньяка.)

Получение Н 2 О 2 . Молекулы Н 2 О 2 всегда получаются в небольших количествах при горении и окислении различных соединений. При горении Н 2 О 2 образуется либо при отрыве атомов водорода от исходных соединений промежуточными гидропероксидными радикалами, например: HO 2 . + CH 4  H 2 O 2 + CH 3 . , либо в результате рекомбинации активных свободных радикалов: 2ОН .  Н 2 О 2 , Н . + НО 2 .  Н 2 О 2 . Например, если кислородно-водородное пламя направить на кусок льда, то растаявшая вода будет содержать в заметных количествах Н 2 О 2 , образовавшийся в результате рекомбинации свободных радикалов (в пламени молекулы Н 2 О 2 немедленно распадаются). Аналогичный результат получается и при горении других газов. Образование Н 2 О 2 может происходить и при невысокой температуре в результате различных окислительно-восстановительных процессов.

В промышленности пероксид водорода уже давно не получают способом Тенара – из пероксида бария, а используют более современные методы. Один из них – электролиз растворов серной кислоты. При этом на аноде сульфат-ионы окисляются до надсульфат-ионов: 2SO 4 2– – 2e  S 2 O 8 2– . Надсерная кислота затем гидролизуется:

H 2 S 2 O 8 + 2H 2 O  H 2 O 2 + 2H 2 SO 4 .

На катоде, как обычно, идет выделение водорода, так что суммарная реакция описывается уравнением 2H 2 O  H 2 O 2 + H 2 . Но основной современный способ (свыше 80% мирового производства) – окисление некоторых органических соединений, например, этилантрагидрохинона, кислородом воздуха в органическом растворителе, при этом из антрагидрохинона образуются Н 2 О 2 и соответствующий антрахинон, который потом снова восстанавливают водородом на катализаторе в антрагидрохинон. Пероксид водорода извлекают из смеси водой и концентрируют перегонкой. Аналогичная реакция протекает и при использовании изопропилового спирта (она идет с промежуточным образованием гидропероксида): (СН 3) 2 СНОН + О 2  (СН 3) 2 С(ООН)ОН  (СН 3) 2 СО + Н 2 О 2 . При необходимости образовавшийся ацетон также можно восстановить до изопропилового спирта.

Применение Н 2 О 2 . Пероксид водорода находит широкое применение, а его мировое производство исчисляется сотнями тысяч тонн в год. Его используют для получения неорганических пероксидов, как окислитель ракетных топлив, в органических синтезах, для отбеливания масел, жиров, тканей, бумаги, для очистки полупроводниковых материалов, для извлечения из руд ценных металлов (например, урана путем перевода его нерастворимой формы в растворимую), для обезвреживания сточных вод. В медицине растворы Н 2 О 2 применяют для полоскания и смазывания при воспалительных заболеваниях слизистых оболочек (стоматиты, ангина), для лечения гнойных ран. В пеналах для хранения контактных линз в крышку иногда помещают очень небольшое количество платинового катализатора. Линзы для их дезинфекции заливают в пенале 3%-ным раствором Н 2 О 2 , но так как этот раствор вреден для глаз, пенал через некоторое время переворачивают. При этом катализатор в крышке быстро разлагает Н 2 О 2 на чистую воду и кислород.

Когда-то модно было обесцвечивать волосы «перекисью», сейчас для окраски волос существуют более безопасные составы.

В присутствии некоторых солей пероксид водорода образует как бы твердый «концентрат», который удобнее перевозить и использовать. Так, если к сильно охлажденному насыщенному раствору борнокислого натрия (буры) добавить Н 2 О 2 в присутствии, постепенно образуются большие прозрачные кристаллы пероксобората натрия Na 2 [(BO 2) 2 (OH) 4 ]. Это вещество широко используется для отбеливания тканей и как компонент моющих средств. Молекулы Н 2 О 2 , как и молекулы воды, способны внедряться в кристаллическую структуру солей, образуя подобие кристаллогидратов – пероксогидраты, например, К 2 СО 3 ·3Н 2 О 2 , Na 2 CO 3 ·1,5H 2 O; последнее соединение широко известное под названием «персоль». Так называемый «гидроперит» CO(NH 2) 2 ·H 2 O 2 представляет собой клатрат – соединение включения молекул Н 2 О 2 в пустоты кристаллической решетки мочевины.

В аналитической химии с помощью пероксида водорода можно определять некоторые металлы. Например, если к раствору соли титана(IV) – сульфата титанила добавить пероксид водорода, раствор приобретает ярко-оранжевый цвет вследствие образования надтитановой кислоты:

TiOSO 4 + H 2 SO 4 + H 2 O 2  H 2 + H 2 O. Бесцветный молибдат-ион MoO 4 2– окисляется Н 2 О 2 в интенсивно окрашенный в оранжевый цвет пероксидный анион. Подкисленный раствор дихромата калия в присутствии Н 2 О 2 образует надхромовую кислоту: K 2 Cr 2 O 7 + H 2 SO 4 + 5H 2 O 2  H 2 Cr 2 O 12 + K 2 SO 4 + 5H 2 O, которая довольно быстро разлагается: H 2 Cr 2 O 12 + 3H 2 SO 4  Cr 2 (SO 4) 3 + 4H 2 O + 4O 2 . Если сложить эти два уравнения, получится реакция восстановления пероксидом водорода дихромата калия:

K 2 Cr 2 O 7 + 4H 2 SO 4 + 5H 2 O 2  Cr 2 (SO 4) 3 + K 2 SO 4 + 9H 2 O + 4O 2 .

Надхромовую кислоту можно извлечь из водного раствора эфиром (в растворе эфира она значительно более устойчива, чем в воде). Эфирный слой при этом окрашивается в интенсивный синий цвет.

Илья Леенсон

ЛИТЕРАТУРА

Долгоплоск Б.А., Тинякова Е.И. Генерирование свободных радикалов и их реакции . М., Химия, 1982 Химия и технология перекиси водорода . Л., Химия, 1984

Перекись водорода была впервые получена химиком Луисом Тенеро в 1818 году и уже очень скоро стала применяться в промышленности. Сейчас ее повсеместно используют в хозяйстве и быту.

1 Что такое перекись водорода: химическая формула и свойства

Перекись водорода это простейший представитель пероксидов. Он представляет собой прозрачную жидкость со своеобразным металлическим вкусом и слабым запахом, способную неограниченно растворяться в спирте, воде и эфире.

Химическая формула

Химическая формула перекиси водорода – Н 2 O 2 . Это означает, что она содержит 2 молекулы водорода и 2 молекулы кислорода.

Химические свойства

    Соединение может распадаться под влиянием некоторых факторов:
  • Нагревание;
  • Солнечный свет;
  • Взаимодействие с окислителями или восстановителями, щелочью.

При взаимодействии с определенными металлами, такими например, как Mn или Fe, происходит активная химическая реакция

Распад вещества быстрее происходит в щелочной среде, кислотная же среда наоборот замедляют процесс. Именно поэтому в раствор часто добавляют фосфорную кислоту. В термических условиях H2O2 быстро разлагается, поэтому не рекомендуется хранить его на свету.

Пероксид водорода хорошо смешивается с C 2 H 5 OH (спиртом) и H 2 O (водой) в любых пропорциях.

Перекись водорода и вода имеют схожий состав, однако температура замерзания гораздо ниже при их взаимодействии, чем если использовать их по отдельности. Смеси, содержащие от 45% пероксида водорода могут значительно переохлаждаться, так есть растворы, температура замерзания которых ниже -55℃.

H 2 O 2 - сильный окислитель, отдающий при реакции один атом кислорода. Воздействие крепкого раствора H2O2 на легковоспламеняющиеся вещества, такие как древесина, хлопок, бумага. происходит реакция горения.

Реакция распада перокисда водорода

Кислотная среда более подходящаая среда для распада. Щелочная же более подходит для восстановления

Пример реакции восстановления мы можем наблюдать при взаимодействии H2O2 с серебром

Аналогично, по существу, протекает его взаимодействие с озоном (О 3 + Н 2 О 2 = 2 Н 2 О + 2 О 2) и с перманганатом калия в кислой среде:

Последняя реакция применяется для количественного определения пероксида водорода.

Перекись водорода - слабый окислитель, который взаимодействуя с гидроксидами определенных металлов образуют соли H 2 O 2 . Например, если рассматривать реакцию с гидроксидом бария:

2 Основные лечебные свойства

Перекись водорода – важное звено в химических процессах живого организма.
  • Участвует в процессе метаболизма;
  • Выступает в роли антиоксиданта: имеет разрушительное действие на токсины, а также уничтожает любой патологический микроорганизм;
  • Обладает восстанавливающим свойством на состав крови и ее кислородное насыщение;
  • Нормализует кислотно-щелочной баланс;
  • Участвует в регуляции гормонального уровня в щитовидной железе, репродуктивной системе и надпочечниках;
  • Не имеет токсического влияния на организм, так как не скапливается при длительном применении;
  • Оказывает расширяющее воздействие на сосуды;
  • Улучшает функцию желудочно-кишечного тракта;
  • Способствует ускорению регенерации в тканях.

3 Способы применения

Уже многие годы перекись водорода используется в различных областях применения благодаря своей эффективности и доступности. Его применение основывается в первую очередь на его окисляющих свойствах.

В традиционной медицине

Соединение назначается при многих заболеваниях. Самыми частыми показаниями к его рекомендации являются:
  • Смазывание небольших повреждений кожного покрова: антисептик применяют на раны, царапины и ссадины. К нему чувствительны все инфекционные микробы: вирусы, бактерии, грибки и простейшие.
  • Обработка операционного поля перед введением основного антисептика: используют на глубокой гнойной ране, флегмоне. Во время контакта с пероксидазой возникает пена в большом количестве, размягчающая патологические образования. После него вводят лечебный антисептический препарат, с которым легко вымываются некротизированные ткани, гной и кровяные сгустки.
  • Очищение слухового прохода от серы: закапывают несколько капель лекарства и ждут около 3 минут. Затем вводят облепиховое масло и засекают 1 минуту. Сера размягчается, и ее нетрудно удалить ватными палочками.
  • Полоскание полости рта и горла: при различных воспалениях специалисты рекомендуют готовить раствор из 100 мл дистиллированной воды и 15 мл 3% перекиси водорода. Он устраняет неприятный запах, растворяет пищевые остатки и предупреждает образование налета на зубах и языке.
  • Использование при кожных болезнях: в качестве комплексной терапии врач может назначить лекарство для лечения псориаза, экземы, грибка ногтей и бородавок.

В косметологии

Препарат используется на коже, склонной к излишней жирности и появлению акне, черных точек, благодаря способности уничтожать возбудителей инфекции. Для этого 5 капель 3% раствора добавляют к 50 мл тоника. Косметологи советуют его наносить не более 2 раз в неделю.

Людям с веснушками и пигментными пятнами вещество также подойдет за счет его отбеливающего свойства. Чтобы провести процедуру, применяют специальные маски. Взять ст. л. 20% творога, сырой желток и 5 капель перекиси. Все ингредиенты перемешиваются до однородной структуры, а затем кисточкой наносятся на кожный покров. Слегка массируют, оставляя маску на 15 мин. По истечении времени масса смывается, а на лицо накладывают увлажняющий крем.

Применение в быту

Благодаря полезным свойствам Н 2 О 2 можно не только устранить желтые пятна, разводы с белой материи и удалить налет на кафельной плитке, но и избавиться от грибка и плесени.

Чтобы почистить плитку в ванной комнате, взять 40 мл пероксида, ч. л. жидкого мыла и полстакана пищевой соды. Компоненты хорошо перемешать и нанести на влажную губку, которой оттереть проблемные участки. Если загрязнений много, нужно оставить массу на 10 минут, чтобы они растворились.

Для очистки материала берут 3% раствор, который вливают на пятна. Оставляют на 20-30 минут, а затем смывают с поверхности.

Перекись водорода в народной медицине

Перед тем как приготавливать рецепты на основе этого вещества, рекомендуется проконсультироваться с доктором.
  • Во время насморка или гайморита берут ст. л. кипяченой воды, в которой разводят 15 капель перекиси. Получившимся лекарством промывают каждый носовой ход пипеткой.
  • В период обострения остеохондроза прикладывают компрессы Н 2 О 2 . Марлевую салфетку обильно смачивают в веществе и накладывают на проблемную зону позвоночника, оставляя поверх полиэтилен. Не желательно держать компресс свыше 15 минут во избежание образования ожогов.
  • При тонзиллите или выраженной зубной боли ч. л. Н 2 О 2 смешивают с четвертью стакана теплой питьевой воды. Полоскают рот до 5-6 раз в сутки.
  • Для остановки кровотечения из носа требуется смочить ватный шарик в перекиси и вставить его в ноздрю на 10 минут.
  • Чтобы прекратить кровотечение из раны кусок ткани смачивается в Н 2 О 2 и прикладывается на повреждение.
  • Для очищения пяток изготавливают ванночки с перекисью водорода. Разогревают 4 л воды, после чего в нее добавляют 3 ст. л. соли и 3 ст. л. препарата. Тщательно размешивают, а затем опускают ноги в таз. Держат около 6 минут, потом очищают пятки пемзой. В завершении смазать ноги кремом.

4 Польза или вред?

Если человек хорошо переносит пероксид и правильно им пользуется, он не должен вызвать каких-либо неблагоприятных последствий.

Попадание на человека крепкого раствора перекиси водорода оставляет на коже белые химические ожоги.

Нельзя употреблять вещество внутрь, это опасно появлением отравления. При полоскании рта иногда теряется чувствительность языка и могут гипертрофироваться его сосочки.

Также не стоит использовать при наличии у человека индивидуальной непереносимости. Это может повлечь за собой развитие аллергической реакции.

5 Форма выпуска и возможные противопоказания препарата

Изготавливается в виде 3% раствора для наружного местного нанесения.

Его крайне нежелательно использовать при следующих состояниях:

  • Кровотечения из вен или артерий;
  • Индивидуальная непереносимость;
  • Период беременности для обработки ротовой полости;
  • Детский возраст младше 12 лет.

6 Метод Неумывакина: что это?

Это лечение с успехом применяется в нетрадиционной медицине. Профессор Неумывакин считал перекись панецеей от всех заболеваний. Принцип действия он объяснял укрепляющим эффектом лекарства: при взаимодействии с кровью и ферментом каталазой оно распадается до воды и кислорода, который разжижает кровь, нормализует обменные процессы и улучшает деятельность органов и систем.

Если ожидаемый эффект не достигался, профессор считал, что организм чрезмерно зашлакован. Поэтому он рекомендовал проводить полную очистку.

Метод не признан официальной медициной, так как его противники утверждают, что перекись не только неэффективна, но и может причинить опасность при использовании не по назначению.

В нашей следующей статье мы поговорим об .