Формула фика физиология. Метод артериальной термодилюции

Катетеризация полостей сердца выполняется с помощью пункции и чрескожного введения катетера в сосуд - периферическую вену (локтевая, подключичная, югулярная, бедренная) для правых отделов сердца или артерию (плечевая, бедренная, аксиллярпая, лучевая) для левых отделов сердца.

, , , , , , , ,

Методика проведения катетеризации полостей сердца

Метод термодилюции

При этом методе используется охлажденный изотонический раствор натрия хлорида (5-10 мл), который вводят по многопросветному катетеру в правое предсердие, кончик катетера с термистором находится в легочной артерии. Калибровку кривых осуществляют кратковременным включением постоянного сопротивления, которое дает отклонения регистрирующего устройства, соответствующие определенному для данного термистора изменению температуры. Большинство приборов для термодилюции снабжено аналоговыми вычислительными устройствами. Современная аппаратура позволяет производить до 3 измерений МО крови в течение 1 мин и многократно повторять исследования. Сердечный выброс, или МО, определяется по следующей формуле: МО = V (Т1 - Т2) х 60 х 1,08 / S (л/мин),

где V - объем введенного индикатора; Т1 - температура крови; Т2 - температура индикатора; S - площадь под кривой разведения; 1,08 - коэффициент, зависящий от удельной плотности и теплоемкости крови и изотонического раствора натрия хлорида.

Достоинства термодилюции, а также потребность катетеризации только венозного русла делают этот метод в настоящее время наиболее приемлемым для определения сердечного выброса в клинической практике.

Некоторые технические аспекты работы катетеризационной лаборатории

Персонал катетеризационной ангиографической лаборатории включает заведующего, врачей, операционный средний медперсонал и рентгенотехников (рентгенолаборантов), если применяется кинорентгено- и крупноформатная съемка. Влабораго риях, испол ьзующих только видеофильмы и компьютерную запись изображения, рентгенолаборанты не нужны. Все сотрудники лаборатории должны владеть приемами сердечно-легочной реанимации, для чего в рентгеновском операционном кабинете должны быть соответствующие медикаменты, дефибриллятор, приспособление для электрической стимуляции сердца с набором электрод-катетеров, центральная подача кислорода и (желательно) аппарат для искусственной вентиляции: легких.

Сложные и рискованные диагностические процедуры и ЧКВ (ангиопластика, стентирование, атерэктомия и др.) желательно проводить в клиниках, где есть кардиохирургическая бригада. Согласно рекомендации The American College of Cardiology/American Heart Association, ангиопластика и обследование пациентов с высоким риском осложнений, ОИМ могут выполняться опытными, квалифицированными специалистами без наличия в госпитале кардиохирургической поддержки, если пациент не может быть транспортирован в более подходящее место без дополнительного риска. В Европе и некоторых других странах (в частности, и в России) все чаще выполняют эндоваскулярные вмешательства без наличия кардиохирургов, так как потребность в экстренном кардиохирургическом пособии в настоящее время крайне низка. Достаточно договоренности с какой-либо расположенной поблизости клиникой сердечно-сосудистой хирургии для экстренного перевода туда больного в случае возникновения пери- и постпроцедурных осложнений.

Для поддержания формы, квалификации и мастерства операторов в лаборатории в год должно выполняться не менее 300 процедур, а каждый врач должен делать в год не менее 150 диагностических процедур. Для катетеризации и ангиографии необходимы высокоразрешающая рентгеноангиографическая установка, система для мониторирования ЭКГ и внутрисосудистого давления, архивирования и обработки ангиографических изображений, стерильный инструментарий и различные виды катетеров (разные типы катетеров для коронарной ангиографии описаны ниже). Ангиографическая установка должна быть оборудована приставкой для киноангиографического или цифрового компьютерного получения изображения и архивирования, иметь возможность получения изображения в режиме онлайн, т. е. сразу с количественным компьютерным анализом ангиограмм.

Изменения кривых внутриполостного давления

Кривые внутриполостного давления могут изменяться при различных патологических состояниях. Эти измене-ния служат для диагностики при обследовании пациентов с разнообразной патологией сердца.

Чтобы понимать причины изменения давления в полостях сердца, необходимо иметь представление о временных взаимоотношениях между механическими и электрическими процессами, происходящими в течение сердечного цикла. Амплитуда а-волны в правом предсердии выше амплитуды у-волны. Превышение у-волны над а-волной в кривой давления из правого предсердия говорит о нарушении заполнения предсердия во время систолы желудочков, что бывает при недостаточности трикуспидального клапана или дефекте

При стенозе трикуспидального клапана кривая давления в правом предсердии напоминает таковую в левом предсердии при стенозе митрального клапана или констриктивном перикардите, когда в середине и конце диастолы появляется снижение и плато, типичные для повышенного давления во время ранней систолы. Среднее давление в левом предсердии достаточно точно соответствует давлению заклинивания легочной артерии и диастолическому давлению в легочном стволе. При недостаточности митрального клапана без стеноза происходит быстрое снижение давления во время начала систолы (снижение у-волны), а затем постепенное повышение его в позднюю диастолу (диастаз). Это отражает достижение равновесия давления в предсердии и желудочке в позднюю фазу желудочкового наполнения. Напротив, у пациентов с митральным стенозом снижение у-волны происходит медленно, при этом давление в левом предсердии продолжает снижаться на протяжении всей диастолы, а признаков диастаза пульсового давления в левом предсердии нет, так как сохраняется атриовентрикулярный градиент давления. Если митральный стеноз сопровождается нормальным синусовым ритмом, го а-волна в левом предсердии сохраняется и сокращение предсердий обусловливает создание большого градиента давления. У больных с изолированной митральной регургитацией v-вoлнa четко выражена и имеет отвесное нисходящее колено у-линии.

На кривой левожелудочкового давления точка КДД непосредственно предшествует началу его изометрическо го сокращения и располагается сразу после а-волны перед с-волной левопредсердного давления. КДД левого желудочка может повышаться в следующих случаях: сердечной недостаточности, если желудочек испытывает большую нагрузку, вызванную избыточным притоком крови, например при аортальной или митральной недостаточности; гипертрофия левого желудочка, сопровождающаяся снижением его растяжимости, эластичности и податливости; рестриктивная кардиомиопатия; констриктивный перикардит; тампонада сердца, вызванная перикардиальным выпотом.

При стенозе аортального клапана, который сопровождается затрудненным оттоком крови из левого желудочка и повышением в нем давления по сравнению с систолическим давлением в аорте, т. е. появлением градиента давления, левожелудочковая кривая.давления напоминает кривую давления во время изометрического сокращения. Ее очертания более симметричны, а максимальное давление развивается позже, чем у здоровых лиц. Похожая картина наблюдается и при записи давления в правый желудочек у пациентов со стенозом легочной артерии. Кривые АД также могут различаться у больных со стенозом устья аорты различного типа. Так, при клапанном стенозе наблюдается медленное и отсроченное повышение волны артериального пульса, а при гипертрофической кардиомиопатии начальное резкое повышение давления сменяется его быстрым снижением и затем вторичной положительной волной, отражающей обструкцию во время систолы.

Производные показатели внутрижелудочкового давления

Скорость изменения/повышения кривой внутрижслудочкового давления во время фазы изоволюмического сокращения называют первой производной - dр/dt. Раньше ее использовали для оценки сократимости миокарда желудочков. Величина dр/dt и вторая производная - dр/dt/р - рассчитываются по кривой внутрижелудочкового давления с использованием электронной и компьютерной техники. Максимальные значения этих показателей представляют собой индексы скорости сокращения желудочка и помогают оцепить сократимость и инотропный статус сердца. К сожалению, большой разброс этих показателей у разных категорий больных не позволяет разработать какие-либо усредненные нормативы, но они вполне применимы у одного больного с исходными данными и на фоне применения препаратов, улучшающих сократительпую функцию сердечной мышцы.

В настоящее время, имея в арсенале обследования пациентов такие методы, как ЭхоКГ в различных ее модификациях, компьютерная (КТ), электронно-лучевая и магнитно-резонансная томография (МРТ), столь важного значения, как ранее, эти показатели для диагностики кардиальных патологий не имеют.

Для определения сердечного выброса может быть использован ряд методов, выбор которого в каждом случае диктуется задачами эксперимента. К ним относятся: 1) методы, основанные на принципе Фика: а) прямой метод Фика, б) непрямые методы Фика, в) метод разведения индикатора; 2) косвенные методы (сфигмометрия, баллистокардиография и др.); 3) прямые методы - регистрация с помощью потокомеров. Не имея возможности дать характеристику всех методов, мы остановимся лишь на изложении основных принципов методов Фика и методе разведения индикатора, который наиболее часто используется в экспериментальных исследованиях.

Следует отметить, что в основе большинства современных методов исследования производительности сердца лежит принцип Фика (хотя сам автор ни разу не воспользовался им в своих экспериментальных исследованиях). Фик первый обратил внимание на то, что количество крови, выбрасываемое сердцем в единицу времени, может быть высчитано по величинам суммарного потребления кислорода и артериовенозной разнице по кислороду. Очевидно, что:
(3.2)
где: Q - минутный объем кровообращения (л/мин); V а O 2 - содержание O 2 в артериальной крови (мл/л); V в O 2 - содержание O 2 в венозной крови (мл/л); VO 2 - суммарное поглощение O 2 (мл/мин).

Отсюда:
(3.3)
Таким образом, минутный объем сердца равняется величине потребления кислорода, деленной на артериовенозную разницу по кислороду.

На основе метода Фика разработана электронная аппаратура, позволяющая автоматически непрерывно регистрировать сердечный выброс путем постоянной регистрации минутного объема дыхания и содержания кислорода во вдыхаемом и выдыхаемом воздухе, артериальной и смешанной венозной крови (Guyton, 1969). В качестве индикаторов при прямом методе Фика могут быть использованы (кроме кислорода) углекислый газ и парааминогиппуровая кислота. Последняя вводится в легочную артерию с известной скоростью для поддержания значительной разницы ее в артериальной и венозной крови (1/5 парааминогиппуровой кислоты удаляется из крови почками за время 1 кругооборота крови). Зная скорость введения индикатора и артериовенозную разницу, легко определить по формуле Фика минутный объем сердца.

Дальнейшим развитием идеи Фика явилась разработка метода разведения индикатора, который с успехом используется в эксперименте и клинике уже свыше 70 лет. Сущность этого метода заключается в непрерывном измерении концентрации индикатора в артериальной крови после введения его в венозное русло. Stewart еще в 1897 г. применял для этой цели непрерывное введение индикатора с известной скоростью до создания в артериальной крови некоторой постоянной его концентрации («плато»), В качестве индикатора он использовал гипертонический раствор поваренной соли, концентрацию которой определял в артериальной крови по электропроводности последней. Сердечный выброс рассчитывался автором по формуле Фика (3.3).

В дальнейшем метод разведения индикатора усовершенствовали Hamilton, Kisman, Dow и др. Они доказали принципиальную возможность однократного быстрого введения индикатора в вену для регистрации минутного объема сердца и внесли ряд предложений, которые позволили избежать ошибок при расчете сердечного выброса, связанных с рециркуляцией крови.

В настоящее время в качестве индикатора наиболее часто используют различные красители (Т-1824; зелень Фокса - кардиогрин, патентованный синий, индигокармин и др.), радиоактивные изотопы, плазму крови и физиологический раствор, отличающийся по температуре от крови. Все используемые индикаторы должны обладать следующими свойствами: 1) равномерно смешиваться с кровью и 2) не выводиться из кровеносного русла за время циркуляции от места введения до места регистрации.

Общим условием при использовании всех индикаторов является необходимость их введения в правое сердце или легочную
артерию. Место регистрации концентрации индикатора в артериальном русле не имеет столь принципиального значения. По данным литературы, кривые разведения индикатора могут быть зарегистрированы как в аорте, так и в периферических артериях. Однако следует иметь в виду, что кривые разведения индикатора, зарегистрированные в дуге аорты или в периферических артериях, дают заниженные величины сердечного выброса, так как при таком определении исключается его миокардиальная фракция.

Методы определения сердечного выброса

Методы определения сердечного выброса можно разделить на физиологические и инструментальны.

К физиологическим методам, прежде всего, относят метод Фика и метод Стюарта‑Гамильтона. Эти методы лежат в основе многих клинических методов определения МОК и УОС. Например, радиокардиография основана на принципе Стюарта‑Гамильтона. Для этих методов характерно первичное определение МОК, а затем вычисление УОС.

МОК ® УО: УО = МОК / ЧСС

К инструментальным методам, использующим иные принципы определения МОК и УОС относятся ультразвуковые, радионуклидные (с определением КДО и КСО), томографические (КТ, МРТ). Всё реже используется для этих целей реографический метод.

Для этих методов характерно первичное определение УОС, а затем вычисление МОК.

УО ® МОК: МОК = УО ´ ЧСС

В 1870 г. немецкий физиолог Адольф Фик впер­вые предложил метод измерения объема сердечного выброса у здоровых животных и людей. Основой этого метода, названного принципом Фика, являет­ся простое применение закона сохранения массы. Данный закон исходит из положения, что количе­ство кислорода (О 2), доставленное в легочные ка­пилляры через легочную артерию, плюс количество О 2 , попадающее в легочные капилляры из альвеол, должны равняться количеству О 2 , которое уносится легочными венами.

Принцип Фика схематически изображен на рис. 710251114.

Рис. 710251114. Схема, иллюстрирующая принцип Фика для измере­ния сердечного выброса[Мф16] .

Количество q 1 кислорода, доставленного в легкие, равно концентрации О 2 в крови легочной ар­терии ([О 2 ] ра ), помноженной на скорость кровотока в легочной артерии (Q), которая равна сердечному выбросу, т. е.

Обозначим количество кислорода, полученное легочными капиллярами из альвеол, как q 2 . При рав­новесии q 2 равно потреблению О 2 организмом. Ко­личество О 2 , которое выводится по легочным венам (обозначим его q 3 ), равно концентрации кислорода в крови легочной вены, [О 2 ] pv „ помноженной на об­щий легочный венозный кровоток, фактически рав­ный кровотоку в легочной артерии (Q), т.е.

Согласно закону сохранения массы

Таким образом, объем сердечного выброса

Это уравнение является формулировкой прин­ципа Фика.

Для клинического определения объема сердечного выброса необходимы три значения:

1) объем потребления кислорода организмом;

2) концентрация кислорода в крови легочной вены ([О 2 ] pv );

3) концентрация кисло­рода в крови легочной артерии ([О 2 ] ра ).

Потребление кислорода рассчитывается на основе измерений объема выдыхаемого воздуха и содержания в нем кислорода через определенный промежуток времени.



Так как кон­центрация кислорода в периферической артериальной крови в значительной мере идентична его концентрации в легочных венах, определяется в пробе перифе­рической артериальной крови, взятой иглой для пунк­ций.

Кровь легочной артерии фактически пред­ставляет собой смешанную венозную кровь. Пробы кро­ви для определения количества кислорода берутся из легочной артерии или правого желудочка через катетер.

Раньше использовался относительно жесткий катетер, который надо было вводить в легочную артерию под рентгеновским контролем. Сегодня очень гибкий кате­тер с маленьким баллончиком возле наконечника может быть введен в периферическую вену. Когда трубка внут­ри сосуда, кровоток переносит ее к сердцу. Следуя из­менениям давления, врач может ввести наконечник ка­тетера в легочную артерию без помощи рентгеноскопии.

Пример рассчета объема сердечного выброса здо­рового взрослого человека, находящегося в состоя­нии покоя, показан на рис. 710251114. При потреблении кислорода 250 мл/мин, его содержании в артериальной (легочной венозной) крови 0,20 мл на 1 мл крови и в смешанной венозной (легочной артериальной) крови 0,15 мл на 1 мл крови объем сердечного выброса равен 250/(0,20 - 0,15) = 5000 мл/мин.

Принцип Фика также используется для оценки по­требления кислорода органами, когда есть возможность для определения кровотока и содержания кислорода в артериальной и венозной крови. Алгебраическая подста­новка показывает, что оно равно кровотоку, умноженно­му на разницу между концентрациями О2 в артериаль­ной и венозной крови. Например, если кровоток через одну почку составляет 700 мл/мин, содержание кисло­рода в артериальной крови равно 0,20 мл на 1 мл крови, а в крови почечной вены - 0,18 мл на 1 мл крови, ско­рость потребления должна быть 700 (0,2-0,18) = 14 мл О2 в 1 мин.

Метод Стюарта-Гамильтона определенияи сердечного выброса[Мф17]

Метод применения растворенных индикаторов для измерения объема сердечного выброса также основы­вается на законе сохранения массы; он схематично изображен на рис. 710251134.

Рис. 710251134. Метод разведения индикатора для измерения сердеч­ного выброса. В этой модели, в которой нет рециркуляции, количе­ство q, мг, красящего вещества одномоментно впрыскивается в точке А в кровоток при Q мл/мин. Смешанный образец жидкости, протекающей через точку В, пропускается с постоянной скоростью через денситометр; С - концентрация красителя в жидкости. Получающаяся в результате кривая концентрации красителя в точ­ке В имеет конфигурацию, показанную в нижней части рисунка.

На схеме жидкость течет че­рез трубку со скоростью Q (мл/с), и q (мг) красящего вещества одномоментно вводится в ее поток в точке А. Смешивание происходит в какой-то точке потока ниже по течению. Если небольшую пробу жидкости непре­рывно там забирать (из точки В) и пропускать через денситометр, кривая концентрации красящего веще­ства, с, может быть записана как функция времени t (см. нижнюю часть рис. 710251134).

Если между точками А и В не происходит потери красящего вещества, количество красителя, q, прохо­дящее через точку В между моментами времени t 1 и t 2 , будет равно

где - средняя концентрация красителя. Ее величина может быть вычислена путем деления размера области концентрации красителя на продолжительность (t 2 –t 1 ) кривой, т.е.

Подставляем величину с в уравнение 45.6 и вычис­ляем значение Q.

Таким образом, поток может быть измерен путем деления количества индикатора (красящего вещества), введенного в него выше по течению, на отрезок, распо­ложенный под кривой концентрации красителя ниже по течению.

Этот метод широко использовался для измерения объема сердечного выброса у человека. Измеренное количество какого-либо индикатора (красителя или радиофармпрепарата, который остается внутри циркуляции) быст­ро вводится в крупную центральную вену или правую половину сердца через катетер. Артериальная кровь непрерывно пропускается через детектор (денситометр или счетчик радионуклидов), и кривая концентрации инди­катора записывается как функция времени.

В настоящее время наиболее популярным методом растворения красящих веществ является термодилюционный метод. Как индикатор здесь используется холодный солевой раствор. Его температура и объем точно устанавливаются перед инъекцией. Гибкий кате­тер вводится в периферическую вену и продвигается так, чтобы наконечник попал в легочную артерию. Маленький терморезистор на конце катетера записы­вает изменения температуры. Отверстие в катетере находится на расстоянии нескольких дюймов от наконеч­ника. Когда конец катетера помещен в легочную арте­рию, отверстие, соответственно, находится в правом предсердии или рядом с ним. Холодный солевой ра­створ быстро вводится через катетер в правое предсер­дие и вытекает через отверстие катетера. Изменение температуры ниже по течению крови записывается тер­морезистором в легочной артерии.

Термодилюционный метод обладает следующими преимуществами: 1) отпадает необходимость в артери­альной пункции; 2) небольшие количества солевого раствора, используемые при каждом измерении, без­вредны, что дает возможность проводить повторные измерения; 3) рециркуляция незначительна. Темпера­тура выравнивается за счет того, что охлажденная кровь протекает через сеть легочных и системных ка­пилляров до того, как во второй раз проходит через терморезистор в легочной артерии.

Чрезвычайно важной характеристикой деятельности сердца является его производительность, т.е. ударный и, соответственно, минутный объем крови. Существует значительное количество прямых и расчетных способов определения сердечного выброса. Наиболее точными среди них являются электромагнитная флоуметрия, прямой кислородный метод Фика, ацетиленовый метод Гроллмана, методы разведения индикаторов (изотопов, температуры жидкости, красителей и пр.), называемые иногда по именам исследователей, обосновавших принцип метода - методом Стюарта-Гамильтона.

2.1. Расчет величины сердечного выброса при использовании электромагнитного расходомера

Электромагнитная флоуметрия относится к числу наиболее точных, современных методов оценки сердечного выброса, основанных на регистрации объемной скорости кровотока. Преимущества метода заключаются в возможности непрерывной регистрации и оценки систолического объема, измерении средней и мгновенной объемной скорости кровотока, проведении фазового анализа на протяжении сердечного цикла. Расчет ударного объема крови (УОК) ведется обычно по формуле:

где Ф макс - максимальный кровоток (мл/с), С - наружный диаметр аорты, равный диаметру датчика, п - толщина стенки аорты, равная 0,08 с; 1,66 - эмпирический коэффициент.

При использовании интегратора возможно быстрое, непосредственное определение и минутного объема крови (МОК), либо МОК находят из произведения УОК на ЧСС. Однако метод относится к числу инвазивных, требует, в зависимости от типа датчика (манжеточный, проточный или катетерный), вскрытия грудной клетки и доступа к аорте либо вскрытия просвета крупных артериальных стволов. Вполне очевидно, что не только в клинике, но и в эксперименте эти условия не всегда могут устраивать исследователя. В то же время при наложении манжеточного датчика на сонную артерию (что в эксперименте легко выполнимо) оказывается возможным расчетным путем определить величину МОК по следующей формуле:

где К - поправочный коэффициент, равный 2,1; У - объемная скорость кровотока в сонной артерии; R 1 - радиус аорты (находится по номограмме); R 2 - радиус сонной артерии (находится до исследования в условиях интактной гемодинамики).

2.2. Расчет величины сердечного выброса при использовании методов разведения индикаторов

Принцип применения методов разведения индикаторов заключается в том, что индикатор быстро вводится в вену как можно ближе к правому предсердию (в эксперименте прямо в правое предсердие), после чего непрерывно определяют его содержание в артериальной крови, лучше всего в аорте или ее крупных ветвях (в эксперименте вдуге аорты). Чем скорее появляется и исчезает индикатор из артериальной крови, тем больше величина минутного объема крови. В качестве индикатора обычно применяют коллоидные красители: Т-1824 или синьку Ивенса (молекулярный вес 960,84; пик абсорбции при длине волны около 640 мм); кардиогрин или зелень Фокса; индигокармин; бром-сульфалимин; вафазурин; пофавердин или уивердин; голубую краску Гейги 536 и др. Кроме красок применяют изотопы йод - 431, хром - 51, радиоактивный криптон или ксенон. В последние годы получает все большее применение метод терморазведения, описанный Фиглером в 1954 году и значительно усовершенствованный М.И. Гуревичем с соавт.; А.Д.Смирновым с соавт.; Д.Е.Вальковым и Ю.Н.Цыбиннм и др. В качестве индикатора обычно используется изотонический раствор хлористого натрия комнатной температуры или охлажденный до + 10°С. Метод не дает нежелательного окрашивания крови и тканей организма и позволяет многократное определение величины МОК. Однако для высокой точности измерений требуется катетеризация, поскольку инъекция физиологического раствора желательна непосредственно в правое предсердие, а термодатчик (обычно термистор МТ-54) должен находиться в восходящей части дуги аорты. Эти условия в клинике могут быть выполнены лишь специалистом хирургом, что ограничивает распространение метода.

В экспериментах зонд с термодатчиком вводится в устье аорты через одну из общих артерий, чаще через первую. Однако при этом сонная артерия перекрывается, что неминуемо ведет к изменению функционального состояния барорецепторов каротидного синуса. В этой связи мы используем обычно иной путь введения зонда с термистором - через бедренную (В.В.Брин, 1977) или подкрыльцовую (В.Б.Брин, 1979) артерии. При этом сонные артерии и каротидные синусы остаются интактными. Введение зонда в правое предсердие мы также осуществляем через подкрыльцовую вену.

Принимая во внимание, что методики разведения индикаторов относятся к числу наиболее распространенных прямых способов определения МОК, мы считаем целесообразным привести способы расчета величины МОК по кривым разведения индикаторов.

При использовании красочных индикаторов МОК находится по формуле:

где 1 - скорость введения красителя, мг/мин; С - концентрация красителя в плазме при достижении плато концентрационной кривой, мг/л.

При использовании метода терморазведения МОК находится по формуле:

где v - объем вводимого раствора, мл; (Тк-Тр) - разность температур крови и индикатора, град.С; R - скорость движения диаграммной бумаги, регистрирующей кривую устройства, мм/с; А - площадь, ограниченная кривой терморазведения, мм 2 ; f - чувствительность регистрирующей системы, град/мм; S I d I - соответственно удельная теплоемкость и удельный вес раствора (для физраствора 0,997 и 1,02); S 2 d 2 - удельная теплоемкость и удельный вес крови (0,870 и 1,05).

Как видно из приведенных выше формул вне зависимости от используемого индикатора для расчета величины МОК необходимо определение площади кривой разведения. Нисходящая часть кривой требует коррекции, т.к. она искажена рециркуляцией крови и повторным поступлением индикатора к месту регистрации (рис.1).

Наиболее точным является полулогарифмический метод корригирования кривой с дальнейшей планиметрией или гравиметрией, однако из-за трудоемкости чаще применяют упрощенные методы расчета площади кривой, не требующее такой коррекции.

В физиологических условиях величина минутного объема крови левого желудочка примерно на 1% превышает минутный объем крови правого желудочка за счет поступления небольшого количества крови из бронхиальных вен в легочные и из тебезиевых вен в полость левого желудочка. Поэтому, учитывая такую малую разницу, обычно считают величину сердечного выброса равной для обоих желудочков сердца. Однако в ряде случаев необходимо знать точную величину минутного объема крови раздельно для правого и левого желудочков.

Для определения минутного объема крови правого желудочка в настоящее время обычно используются две группы методов: разведения индикатора и методы, основанные на принципе Фика.

Группа методов разведения, применяемых для определения минутного объема правого желудочка, основана на расчете времени и степени разведения индикатора, вводимого в полость правого желудочка одномоментно или с постоянной скоростью (метод Стюарта-Гамильтона).

При использовании метода терморазведения физиологический раствор вводят непосредственно в полость правого желудочка, синхронизируя момент введения с диастолой (либо в правое предсердие), а регистрация кривой разведения проводится в легочной артерии. Принято считать, что этот метод позволяет наиболее точно определить величину МОК правого желудочка. Формулы расчета МОК для индикаторных методов аналогичны описанным для левого желудочка (21)-(23).

2.3. Расчет величины сердечного выброса при использовании метода Фика и его модификаций

Принцип Фика состоит в том, что количество вещества, поглощенного или ввделенного кровью,прямо пропорционально величине кровотока и разнице между концентрацией этого вещества в притекающей и оттекающей крови. При определении минутного объема крови правого желудочка (МОК пж) анализ производится по насыщению крови кислородом. Следует помнить, что это исследование должно проводиться строго в условиях основного обмена и устойчивого состояния пациента.

При этом определение содержания кислорода в крови, взятой из полости правого желудочка или легочной артерии (PаО 2 об%) и из легочных вен или левого предсердия (РV O 2 o6%), производят на газоанализаторе или кюветном оксигемометре. Потребление кислорода (РО 2 мл/мин) определяют на аппарате Холдена по разнице содержания кислорода в окружающем и в выдыхаемом воздухе. Последний в течение 3 мин собирают в мешок Дугласа. Величина минутного объема крови определяется по формуле:

где РСО 2 - количество углекислого газа в выдыхаемом воздухе; РаСO 2 и PVCO 2 - соответственно содержание СO 2 в крови из легочной артерии и легочных вен.

Представляет интерес и метод определения минутного объема крови по азоту (Ли и Дюбуа в модификации Каплан и Кимбель):

где РN 2 О - количество поглощенного N 2 O; РаN 2 O - средняя концентрация N 2 O в мешке и альвеолах после уравновешивания; 0,47 - растворимость N 2 O в крови, об%.

Вполне очевидно, что методы, основанные на принципе Фика, могут использоваться и для определения выброса левого желудочка.

2.4. Реографические методы определения и расчета сердечного выброса

2.5. Расчет сердечного выброса по формулам

Источник : Брин В.Б., Зонис Б.Я. Физиология системного кровообращения. Формулы и расчеты. Издательство Ростовского университета, 1984. 88 с.

Литература [показать]

  1. Александров А.Л., Гусаров Г.В., Егурнов Н.И., Семенов А.А. Некоторые косвенные методы измерения сердечного выброса и диагностики легочной гимертензии. - В кн.: Проблемы пульмонологии. Л., 1980, вып. 8, с.189.
  2. Амосов Н.М., Лшцук В.А., Пацкина С.А. и др. Саморегуляция сердца. Киев, 1969.
  3. Андреев Л.Б., Андреева Н.Б. Кинетокардиография. Ростов н/Д: Изд-во Рост, у-та, 1971.
  4. Брин В.Б. Фазовая структура систолы левого желудочка при деафферентации синокаротидных рефлексогенных зон у взрослых собак и щенков. - Пат. физиол, и экспер. терап., 1975, №5, с.79.
  5. Брин B.Б. Возрастные особенности реактивности синокаротидного прессорного механизма. - В кн.: Физиология и биохимия онтогенеза. Л., 1977, с.56.
  6. Брин В.Б. Влияние обзидана на системную гемодинамику у собак в онтогенезе. - Фармакол. и токсикол., 1977, №5, с.551.
  7. Брин В.Б. Влияние альфа-адреноблокатора пирроксана на системную гемодинамику при вазоренальной гипертензии у щенков и собак. - Бюл. экспер. биол. и мед., 1978, №6, с.664.
  8. Брин В.Б. Сравнительно-онтогенетический анализ патогенеза артериальных гипертензий. Автореф. на соиск. уч. ст. док. мед. наук, Ростов н/Д, 1979.
  9. Брин В.Б., Зонис Б.Я. Фазовая структура сердечного цикла у собак в постнатальнал отногенезе. - Бюл. экспер. биол. и мед., 1974, №2, с. 15.
  10. Брин В.Б., Зонис Б.Я. Функциональное состояние сердца и гемодинамика малого круга при дыхательной недостаточности. - В кн.: Дыхательная недостаточность в клинике и эксперименте. Тез. докл. Всес. конф. Куйбышев, 1977, с.10.
  11. Брин В.Б., Сааков Б.А., Кравченко А.Н. Изменения системной гемодинамики при экспериментальной реноваскулярной гипертонии у собак разного возраста. Cor et Vasa, Ed.Ross, 1977, т.19, №6, с.411.
  12. Вейн А.М., Соловьева А.Д., Колосова О.А. Вегетно-сосудистая дистония. М., 1981.
  13. Гайтон А. Физиология кровообращения. Минутный объем сердца и его регуляция. М., 1969.
  14. Гуревич М.И., Берштейн С.А. Основы гемодинамики. - Киев, 1979.
  15. Гуревич М.И., Берштейн С.А., Голов Д.А. и др. Определение сердечного выброса методом термодилюции. - Физиол. журн. СССР, 1967, т.53, №3, с.350.
  16. Гуревич М.И., Брусиловский Б.М., Цирульников В.А., Дукин Е.А. Количественная оценка величины сердечного выброса реографическим методом. - Врачебное дело, 1976, № 7, с.82.
  17. Гуревич М.И., Фесенко Л.Д., Филиппов М.М. О надежности определения сердечного выброса методом тетраполярной грудной импедансной реографии. - Физиол. журн. СССР, 1978, т.24, № 18, с.840.
  18. Дастан Х.П. Методы исследования гемодинамики у больных гипертензией. - В кн.: Артериальные гипертензии. Материалы советско-американского симпозиума. М., 1980, с.94.
  19. Дембо А.Г., Левина Л.И, Суров Е.Н. Значение определения давления в малом круге кровообращения у спортсменов. - Теория и практика физической культуры, 1971, № 9, с.26.
  20. Душанин С.А., Морев А.Г., Бойчук Г.К. О легочной гипертензии при циррозе печени и определении ее графическими методами. - Врачебное дело, 1972, №1, с.81.
  21. Елизарова Н.А., Битар С., Алиева Г.Э., Цветков А.А. Изучение регионарного кровообращения с помощью импедансометрии. - Терап.архив, 1981, т.53, № 12, с.16.
  22. Заславская P.M. Фармакологические воздействия на легочное кровообращение. М., 1974.
  23. Зернов Н.Г., Кубергер М.Б., Попов А.А. Легочная гипертензия в детском возрасте. М., 1977.
  24. Зонис Б.Я. Фазовая структура сердечного цикла по данным кинетокардиографии у собак в постнатальном онтогенезе. - Журн. эволюцион. биохимии и физиол., 1974, т.10, № 4, с.357.
  25. Зонис Б.Я. Электромеханическая деятельность сердца у собак различного возраста в норме и при развитии реноваскулярной гипертонии, Автореф. дис. на соиск. уч.ст. канд.мед.наук, Махачкала, 1975.
  26. Зонис Б.Я., Брин В.Б. Влияние однократного приема альфа-адренергического блокатора пирроксана на кардио- и гемодинамку у здоровых людей и больных артериальными гипертензиями, - Кардиология, 1979, т.19, № 10, с.102.
  27. Зонис Я.М., Зонис Б.Я. О возможности определения давления в малом круге кровообращения по кинетокардиограмме при хронических заболеваниях легких. - Терап. архив, 4977, т.49, № 6, с.57.
  28. Изаков В.Я., Иткин Г.П., Мархасин B.C. и др. Биомеханика сердечной мышцы. М., 1981.
  29. Карпман В.Л. Фазовый анализ сердечной деятельности. М., 1965
  30. Кедров А.А. Попытка количественной оценки центрального и периферического кровообращения электрометрическим путем. - Клиническая медицина, 1948, т.26, № 5, с.32.
  31. Кедров А.А. Электроплетизмография как метод объективной оценки кровообращения. Автореф. дис. на соиск. уч. ст. канд. мед. наук, Л., 1949.
  32. Клиническая реография. Под ред. проф. В.Т.Шершнева, Киев, 4977.
  33. Коротков Н.С. К вопросу о методах исследования кровяного давления. - Известия ВМА, 1905, № 9, с.365.
  34. Лазарис Я.А., Серебровская И.А. Легочное кровообращение. М., 1963.
  35. Лериш Р. Воспоминания о моей минувшей жизни. М., 1966.
  36. Мажбич Б.И., Иоффе Л.Д., Замещений М.Е. Клинико-физиологические аспекты регионарной электроплетизмографии легких. Новосибирск, 1974.
  37. Маршалл Р.Д., Шефферд Дж. Функция сердца у здоровых и бальных. М., 1972.
  38. Меерсон Ф.З. Адаптация сердца к большой нагрузке и сердечная недостаточность. М., 1975.
  39. Методы исследования кровообращения. Под общей редакцией проф. Б.И.Ткаченко. Л., 1976.
  40. Мойбенко А.А., Повжитков М.М., Бутенко Г.М. Цитотоксические повреждения сердца и кардиогенный шок. Киев, 1977.
  41. Мухарлямов Н.М. Легочное сердце. М., 1973.
  42. Мухарлямов Н.М., Сазонова Л.Н., Пушкарь Ю.Т. Исследование периферического кровообращения с помощью автоматизированной окклюзионной плетизмографии, - Терап. архив, 1981, т.53, № 12, с.3.
  43. Оранский И.Е, Акселерационная кинетокардиография. М., 1973.
  44. Орлов В.В. Плетизмография. М.-Л., 1961.
  45. Осколкова М.К., Красина Г.А. Реография в педиатрии. М., 1980.
  46. Парин В.В., Меерсон Ф.З. Очерки клинической физиологии кровообращения. М., 1960.
  47. Парин В.В. Патологическая физиология малого круга кровообращения В кн.: Руководство по патологической, физиологии. М., 1966, т.3, с. 265.
  48. Петросян Ю.С. Катетеризация сердца при ревматических пороках. М., 1969.
  49. Повжитков М.М. Рефлекторная регуляция гемодинамики. Киев, 1175.
  50. Пушкарь Ю.Т., Большов В.М., Елизаров Н.А. и др. Определение сердечного выброса методом тетраполярной грудной реографии его метрологические возможности. - Кардиологии, 1977, т.17, №17, с.85.
  51. Радионов Ю.А. Об исследовании гемодинамики методом разведения красителя. - Кардиология, 1966, т.6, №6, с.85.
  52. Савицкий Н.Н. Биофизические основы кровообращения и клинические методы изучения гемодинамики. Л., 1974.
  53. Сазонова Л.Н., Больнов В.М., Максимов Д.Г. и др. Современные методы изучения в клинике состояния резистивных и емкостных сосудов. -Терап. архив, 1979, т.51, №5, с.46.
  54. Сахаров M.П., Орлова Ц.Р., Васильева А.В., Трубецкой А.З. Два компонента сократимости желудочков сердца и их определение на основе неинвазивной методики. - Кардиология, 1980, т.10, №9, с.91.
  55. Селезнев С.А.., Вашетина С.М., Мазуркевич Г.С. Комплексная оценка кровообращения в экспериментальной патологии. Л., 1976.
  56. Сывороткин М.Н. Об оценке сократительной функции миокарда. - Кардиология, 1963, т.З, №5, с.40.
  57. Тищенко М.И. Биофизические и метрологические основы интегральных методов определения ударного объема крови человека. Автореф. дис. на соиск. уч. ст. докт. мед. наук, М., 1971.
  58. Тищенко М.И., Сеплен М.А., Судакова З.В. Дыхательные изменения ударного объема левого желудочка здорового человека. - Физиол. журн. СССР, 1973, т.59, №3, с.459.
  59. Тумановекий М.Н., Сафонов К.Д. Функциональная диагностика заболеваний сердца. М., 1964.
  60. Уигерс К. Динамика кровообращения. М., 1957.
  61. Фельдман С.Б. Оценка сократительной функции миокарда по длительности фаз систолы. М., 1965.
  62. Физиология кровообращения. Физиология сердца. (Руководство по физиологии), Л., 1980.
  63. Фолков Б., Нил Э. Кровообращение. М., 1976.
  64. Шершевский Б.М. Кровообращение в малом круге. М., 1970.
  65. Шестаков Н.М. 0 сложности и недостатках современных методов определения объема циркулирующей крови и о возможности более простого и быстрого метода его определения. - Терап. архив, 1977, №3, с.115. И.устер Л.А., Бордюженко И.И. О роли компонентов формулы определения ударного объема крови методом интегральной реографии тела. -Терап. зрхив, 1978, т.50, ?4, с.87.
  66. Agress С.M., Wegnes S., Frement В.P. et al. Measurement of strolce volume by the vbecy. Aerospace Med., 1967, Dec, p.1248
  67. Blumberger K. Die Untersuchung der Dinamik des Herzens bein Menshen. Ergebn.Med., 1942, Bd.62, S.424.
  68. Bromser P., Hanke С. Die physikalische Bestimiung des Schlagvolumes der Herzens. - Z.Kreislaufforsch., 1933, Bd.25, № I, S.II.
  69. Burstin L. -Determination of pressure in the pulmonary by external graphic recordings. -Brit.Heart J., 1967, v.26, p.396.
  70. Eddleman E.E., Wilis K., Reeves T.J., Harrison Т.К. The kinetocardiogram. I. Method of recording precardial movements. -Circulation, 1953, v.8, p.269
  71. Fegler G. Measurement of cardiac output in anaesthetized animals by a thermodilution method. -Quart.J.Exp.Physiol., 1954, v.39, P.153
  72. Fick A. Über die ilessung des Blutquantums in den Herzventrikeln. Sitzungsbericht der Würzburg: Physiologisch-medizinischer Gesellschaft, 1970, S.36
  73. Frank M.J., Levinson G.E. An index of the contractile state of the myocardium in man. -J.Clin.Invest., 1968, v.47, p.1615
  74. Hamilton W.F. The physiology of the cardiac output. -Circulation, 1953, v.8, p.527
  75. Hamilton W.F., Riley R.L. Comparison of the Fick and dye-dilution method of measurement the cardiac output in man. -Amer.J. Physiol., 1948, v.153, p.309
  76. Kubicek W.G., Patterson R.P.,Witsoe D.A. Impedance cardiography as a noninvasive method of monitoring cardiac function and other parameters of the cardiovascular system. -Ann.N.Y.Acad. Sci., 1970, v.170, p.724.
  77. Landry A.B.,Goodyex A.V.N. Hate of rise left ventricular pressure. Indirect measurement and physiologic significance. -Acer. J.Cardiol., 1965, v.15, p.660.
  78. Levine H.J., McIntyre K.M., Lipana J.G., Qing O.H.L. Force-velocity relations in failing and nonfailing hearts of subjects with aortic stenosis. -Amer.J.Med.Sci., 1970, v.259, P.79
  79. Mason D.T. Usefulness and limitation of the rate of rise of intraventricular pressure (dp/dt) in the evaluation of iqyocardial contractility in man. -Amer.J.Cardiol., 1969, v.23, P.516
  80. Mason D.T., Spann J.F., Zelis R. Quantification of the contractile state of the intact human heat. -Amer.J.Cardiol., 1970, v.26, p. 248
  81. Riva-Rocci S. Un nuovo sfigmomanometro. -Gas.Med.di Turino, 1896, v.50, №51, s.981.
  82. Ross J., Sobel В.E. Regulation of cardiac contraction. -Amer. Rev.Physiol., 1972, v.34, p.47
  83. Sakai A.,Iwasaka T., Tauda N. et al. Evaluation of the determination by impedance cardiography. -Soi et Techn.Biomed., 1976, NI, p.104
  84. Sarnoff S.J.,Mitchell J.H. The regulation of the performence of the heart. -Amer.J.Med.,1961, v.30, p.747
  85. Siegel J.H., Sonnenblick E.Н. Isometric Time-tension relationship as an index of ocardial contractility. -Girculat.Res., 1963, v.12, р.597
  86. Starr J. Studies made by simulating systole at necropsy. -Circulation, 1954, v.9, p.648
  87. Veragut P., Krayenbuhl H.P. Estimation and quantification of myocardial contractility in the closed-chest dog. -Cardiologia (Basel), 1965, v.47, № 2, p.96
  88. Wezler K., Böger A. Der Feststellung und Beurteilung der Flastizitat zentraler und peripherer Arterien am Lebenden. -Schmied.Arch., 1936, Bd.180, S.381.
  89. Wezler K., Böger A. Über einen Weg zur Bestimmung des absoluten Schlagvolumens der Herzens beim Menschen auf Grund der Windkesseltheorie und seine experimentalle Prafung. -N.Schmied. Arch., 1937, Bd.184, S.482.